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ABSTRACT: Genomic selection has high economic value 
in breeding programs and this value will result in large data 
sets of genotyped and phenotyped individuals being gener-
ated. With appropriate developments in sequencing meth-
ods and strategies, and bioinformatics and imputation tech-
nologies these large data sets could be sequenced. That may 
enable larger proportions of the genetic variance to be fine-
ly mapped to causal variants. Finely mapping many causal 
variants will open up several new opportunities for breeding 
animals such as use of inflated recombination rates, genome 
editing, accurate estimation of breeding values in crosses, 
and capitalization of de-novo mutations. This paper uses 
simulation to illustrate how breeding programs may capital-
ize on these opportunities: hence genomic selection 2.0.  
Keywords: genomic selection 2.0; genome editing ; re-
combination 
 
 

Introduction 
 

Genomic selection (GS) has absorbed a great pro-
portion of research effort in animal breeding in recent years. 
Consequently, many breeding programs have now incorpo-
rated GS, improving accuracy in selection decisions about 
young individuals. This success, together with dwindling 
sequencing costs, justifies the collection of genomic infor-
mation on huge numbers of individuals. Major breeding 
programs have the capacity to genotype more than one 
hundred thousand individuals per annum, which means that 
more than a million individuals with genomic information 
could be assembled within a decade, in many of such pro-
grams. To date the major benefit derived from genomic 
information has been more accurate predictions of estimat-
ed breeding values (EBV) for young selection candidates 
and these accuracies may now be approaching their upper 
limit, at least when well-designed and large training popula-
tions are available. To capitalize more fully on the scale of 
the data generating capacity that is now possible, new ways 
to select individuals are needed which go further than max-
imizing accuracy of EBV. The objectives of this paper are 
to: (i) review the extant GS paradigm; (ii) present a vision 
for how sequence information could be generated for huge 
livestock data sets (e.g. millions of individuals); and (iii) 
describe a few approaches through which animal breeders 
could utilize this capacity for increasing the rate of genetic 
progress. 

 
 

 

Three Classifications for Genomic Selection 
 
GS0.0 - When GS was proposed, its underlying 

assumption was that linkage disequilibrium information 
between causal variants and high-density markers spread 
across the whole genome would enable accurate predictions 
of EBV. This could be referred to as GS0.0. With training 
populations of not more than a few thousand individuals the 
model underpinning GS0.0 worked well for traits controlled 
by a small number of causal variants, each with a large 
effect. 
 

GS1.0 - Almost all traits of agronomic importance 
are controlled by many causal variants in complex ways. 
Therefore the GS that has worked in practice has primarily 
used genomic information to capture large linkage blocks 
that are shared by closely related individuals. This could be 
referred to as GS1.0. In GS1.0 the effects of individual 
causal variants are neither accurately estimated nor finely 
mapped (this is not their objective, in any case). However, 
if sufficient numbers of very close relatives to the selection 
candidates are present in the training population, then accu-
rate predictions of EBV can be obtained with a relatively 
small number of markers (e.g. <10,000). However, the 
accuracy of these predictions quickly dissipates as the relat-
edness between the training population and prediction can-
didates decreases. 
 

GS2.0 - GS2.0 could be used to describe the type 
of GS that will be transitioned to in the next years. Because 
of recent and probable future technological advances in 
sequencing methods and imputation GS2.0 will likely be 
underpinned by the ability to have sequence information for 
all candidates and huge training populations (e.g. all breed-
ing and production individuals). With such huge data sets, 
larger proportions of the total genetic variance will be as-
cribed to causal variants, leading to new opportunities to 
select animals, which go beyond more accurate and more 
persistent EBVs.  
 

For example: (i) Genome Editing (GE), which was 
the Nature Method of the Year in 2011, could be used to 
create new variation or ‘repair’ old variation in targeted 
ways; (ii) breeding programs could be modified to utilize 
subset of the millions of naturally occurring de-novo muta-
tions that might be agronomically valuable; or (iii) recom-
bination rate could be increased (through selection, GE, or 
by manipulating the environment) and this could enable 
more of the standing genetic variation be utilizable in each 



generation. Additionally breeders may be able to capitalize 
on different kinds of variability, not only single nucleotide 
polymorphisms (SNP), but also copy number variants or 
other variants, use of functional information, prediction of 
merit in crosses, and less investment in phenotyping by 
getting more stable EBVs. 

 
Desirable Properties of GS2.0 Data Sets. 
 
GS1.0 training populations needed to comprise 

lots of close relatives of the individuals for whom EBV 
were to be predicted, so that the effects of large shared 
haplotypes could be estimated well and so that there would 
be a limited number of recombinations, to break apart these 
haplotypes, between the training and prediction individuals. 
GS2.0 training sets will need to be different to capitalize on 
increased volumes of genomic data. In summary, the train-
ing set will need to be huge and comprise of individuals 
that are as unrelated to each other as possible. Such data 
will be needed because: (i) there is a huge number of segre-
gating variants that need to be estimated (e.g., tens of mil-
lions SNP, millions of Indels, etc); and (ii) because in small 
data sets these segregating variants are highly correlated 
due to recombination being a very rare occurrence. Huge 
data sets of unrelated individuals not only enable utilization 
of the recombinations that occur in each individual within 
the data sets, but also all of the ancestral recombinations in 
the large coalescent tree that conceptually connects all 
individuals. With a sufficient number of phenotypes and 
recombinations, fine mapping the causal variants for large 
proportions of the genetic variance would be more powerful 
than it is today. 

 
Generating Huge Data Sets  
with Sequence Information 

 
Genotype imputation, coupled with complemen-

tary genotyping strategies, has been central to the success of 
GS1.0, because these enabled lots of individuals to be geno-
typed with the required density at low cost. These methods 
and strategies capitalized on some of the features of live-
stock populations: (i) small number of sires; (ii) large fami-
ly sizes; (iii) abundant pedigree information; and (iv) high 
degree of relatedness between individuals. In reality, cheap 
and accurate genotype information on target individuals 
(e.g. candidates and training individuals) was obtained for 
GS1.0 by genotyping the male ancestors at high density, 
phasing their whole chromosomes, and then using low-
density markers to detect the recombination locations and 
track the inheritance of these haplotypes through any inter-
mediate female ancestors. Therefore, by way of example, in 
a pig breeding program 50,000 markers can be imputed in 
selection candidates with an accuracy of >0.96 (i.e., correla-
tion between true and imputed genotype) at a cost of 
<$20.38 (assuming the cost of genotyping with 50,000 
markers is <$80, and with 384 markers is <$20 (Huang et 
al. (2012)). 
 

This approach will be suboptimal for GS2.0, pri-
marily because the cost of generating high-quality sequence 
information on all male ancestors is currently prohibitively 

high, to enable their offspring to be genotyped with stand-
ard low-density platforms. For example, if we assume that 
the library preparation step costs $100, and 1x of sequence 
for one individual costs $100, then the total cost of se-
quencing the 500 sires that might be used per annum in an 
elite pig nucleus at 30 x would be $1.5 million. In compari-
son, genotyping these 500 sires with 50,000 SNP would 
currently cost less than $40,000, if we assume a chip with 
50,000 SNP costs <$80. 
 

An alternative approach could be to sequence all 
individuals at low-coverage, use an imputation-like ap-
proach to build consensus haplotypes to finally impute the 
high-coverage sequence. (NOTE: Imputation algorithms, 
together with suitable sequencing strategies can even detect 
de-novo mutations, albeit with a time lag of two or three 
generations). With this strategy, the actual haplotypes of 
individuals would be sequenced at low-coverage using the 
individuals’ own DNA, but high-coverage sequencing of 
these haplotypes would be obtained by accumulating all of 
the low-coverage reads from all the individuals that carry 
the same haplotype. This approach has three potential ad-
vantages over the approach that uses key ancestors se-
quenced at high-coverage. Firstly, it seems inefficient to 
sequence the same haplotype at high coverage multiple 
times in different individuals. Secondly, accurate imputa-
tion involves the resolving of the combination of haplotypes 
that an individual carries and in the era of sequence data the 
refinement of recombination locations will be the most 
important component of this. For an individual to be imput-
ed, low-coverage sequence data can generate many more 
markers than SNP chips for the same cost. This vastly 
greater number of markers will allow the recombination 
locations to be much more precisely located. Thirdly, in 
GS1.0 accurate genotype imputation was not possible un-
less very close ancestors (e.g. sires and grandsires) of indi-
viduals were genotyped at high-density. Sequencing only 
the key ancestors implies that not all sires and grandsires 
will be sequenced at high-coverage, due to financial con-
straints, and this would severely weaken the power to do 
imputation downstream. In Box 1 simulation is used to 
evaluate the power of these two different approaches and 
the results confirm the advantage of using low coverage 
sequencing on many individuals. 

 
Sequencing Sperm Cells to Increase  

Imputation Accuracy 
 

The accuracy of imputation is partly affected by 
the accuracy with which the whole chromosomes of indi-
viduals are phased. In the absence of the ability to perfectly 
phase sequence data, it may be more powerful to capitalize 
on the high fecundity of sires in animal breeding programs 
and the haploid nature of sperm cells. Box 2 describes a 
simulation that was used to compare the power of sequenc-
ing a number of sperm cells of a sire versus sequencing the 
sire itself. Sequencing sperm cells results in highly accurate 
phasing of the genome of sires, which in turn leads to high-
ly accurate imputation of the sire gametes into the progeny. 
However, when focusing all of the sequencing effort on 
sperm cells, the low levels of recombination during meiosis 



result in part of the gametes of the sire not being represent-
ed in sequenced sperm cells. This leads to inaccurate impu-
tation for these regions in comparison to the accuracy of 
imputation when sequencing the sires DNA directly. Hence, 
an optimal approach might be to utilize sequencing re-
sources on selection candidates and once males are selected 
their sperm cells could be sequenced to boost the accuracy 
of their phasing. Sires would therefore never be directly 
sequenced with high coverage. 

 
Box 1. Evaluation of the power of low-coverage se-
quence strategies in comparison to the “key ancestors 
approach” to enable accurate imputation. 
Simulation: One chromosome 1 Morgan in length, 25 sires, 
1000 progeny to be imputed. 
5 scenarios 
1. Sequence sires at 40x (1000x in total) and genotype 
progeny with 20 low-density SNP markers  
2. Sequence sires at 40x (1000x in total) and genotype 
progeny with 200 low-density SNP markers  
3. Whole genome1 SNP on sires and genotype progeny with 
20 low-density SNP markers  
4. Whole genome1 SNP on sires and genotype progeny with 
200 low-density SNP markers 
5. Do not sequence sires but sequence 1000 progeny at 1x 
(1000x in total) 
1Whole genome SNP means that there are no errors or un-
certainty in SNP calls due to the sequencing depth 
 
Results 
Table 1. Correlation between true and imputed se-
quence 

Scenario Correlation 
1 0.678 
2 0.678 
3 0.752 
4 0.887 
5 0.921 

 
Conclusions 
Imputing sequence (even at 40x) is harder than imputing 
SNP (Sc. 1 and 2 versus Sc. 3 and 4).  
Spreading sequence across progeny is better than sequenc-
ing sires at high x (Sc. 5 versus Sc. 1 and 2) because marker 
density in progeny is higher. 
 

Required Developments to Imputation Algorithms 
 

Imputation algorithms that were developed for ap-
plication in livestock were largely designed to use SNP 
genotype data that has high certainty in the genotype calls 
and a large proportion of data is missing in a structured way 
(e.g. Druet and Georges (2010); Hickey et al. (2011)). Low-
coverage sequence data have uncertain or probabilistic 
genotype calls and the data is missing at random. Thus 
imputation algorithms will need to be completely re-written 
to utilize both heuristic and probabilistic methods; the first 
to ensure scalability for huge data sets and the latter to 
handle uncertain data. Recently, we have taken the first 

steps in developing such an algorithm (Crossa et al. 
(2013)). Focusing only on the heuristic component, our 
prototype algorithm was designed to impute the missing 
data from low-coverage genotyping-by-sequencing (GBS) 
in inbred individuals (NOTE: inbred individuals are phased 
de facto). The algorithm begins by identifying individuals 
that share a haplotype at a region on the basis that those that 
share haplotypes do not have any opposing homozygote 
loci within that region. After identifying these individuals 
their low-coverage reads are stacked and a high-coverage 
consensus haplotype is formed. This haplotype is then back 
imputed into all individuals that carry it. In a test data set of 
maize inbred lines each individual had on average 44% of 
the markers missing. After running the algorithm this re-
duced to 20%. Much of the remaining missing markers 
were missing due to mutations in the GBS restriction en-
zyme sites and thus were actually informative markers in 
themselves and thus not the target for imputation. 
 
Box 2. The power of imputation when sequencing sperm 
cells.	  
Simulation: One chromosome 1 Morgan in length, 50 sires, 
500 progeny to be imputed, 1500 sperm cells available 
 
5 scenarios 
1. Sequence sires at 30x (1500x in total) and genotype 
progeny with 20 low-density SNP markers  
2. Sequence sires at 30x (1500x in total) and genotype 
progeny with 200 low-density SNP markers  
3. Do not sequence sires; instead sequence 1500 sperm cells 
(30 per sire) at 1x (1500x in total) and genotype progeny 
with 20 low-density SNP markers 
4. Do not sequence sires; instead sequence 1500 sperm cells 
(30 per sire) at 1x (1500x in total) and genotype progeny 
with 200 low-density SNP markers 
5. Sequence sires at 10x and 1000 sperm cells (20 per sire) 
at 1x (1500x in total) and genotype progeny with 20 low-
density SNP markers 
6. Sequence sires at 10x and 1000 sperm cells (20 per sire) 
at 1x (1500x in total) and genotype progeny with 200 low-
density SNP markers 
 
Results 
Table 2. Correlation between true and imputed se-
quence 

Scenario Correlation 
1 0.704 
2 0.756 
3 0.761 
4 0.933 
5 0.783 
6 0.967 

 
Conclusions 
Sequencing sperm cells is more powerful than sequencing 
sires. 
Sequencing a mixture of sperms cells and the sires is the 
most powerful.  
 



 
Power of Raw Low-Coverage Sequence Data 

 
Currently there is no powerful imputation algo-

rithm that has been explicitly designed for imputing low-
coverage sequence data in livestock. Algorithms that have 
been designed for human data sets could be used in live-
stock. However, for classical imputation in livestock these 
algorithms have been shown to be very suboptimal, when 
measured using the correct metrics (i.e. the correlation). In 
the absence of powerful imputation algorithms low-
coverage sequence data is still very powerful for genomic 
selection in livestock. The results of a simulation described 
in Box 3 show that when marker density is high (e.g., 
300,000 markers) the accuracy of prediction with very low 
sequencing depth (e.g., 1x) can be as high as with high- 
coverage sequence or high quality SNP data. However, 
generating 300,000 markers with GBS technology at 1x 
coverage can be significantly cheaper than genotyping with 
300,000 SNP markers. 

 
Box 3. The power of raw low-coverage sequence data 
Simulation 
Thirty chromosomes each 1 Morgan in length, 1000 indi-
viduals in each of two generations, 50 males and 500 fe-
males from generation 1 chosen to be the parents of genera-
tion 2. Use 1000 individuals in generation 1 to predict the 
genomic breeding of individuals in generation 2 based on 
ridge regression. GBS or SNP markers with a density of 
3000, 10000, 60000, or 300000. GBS had a range of se-
quencing depths from 0.01x to 20x.    
 
Results 

	  
Figure 1. Accuracy of genomic selection when using 
SNP or a range of sequencing depths for GBS data 
	  
Conclusions 
Low-coverage sequencing in the form of GBS is as power-
ful as SNP. When marker density is high (e.g. 300000 
markers) coverage can be as low as 1x in the absence of 
imputation. 

Required Developments to Sequencing Technologies 
 

Despite the sheer amount of data delivered by cur-
rent sequencing technologies, these will be by no means the 
end. Throughput of next generation sequencing (NGS) will 
continue to increase in the near future although a true 
change in paradigm should come from reliably sequencing 
long single DNA strands. This technology may have a dra-

matic impact to animal breeding, because it would allow 
directly observing phase and therefore increasing imputa-
tion accuracy, together with better characterization of struc-
tural variants. Within the parameter space of available se-
quencing technologies, some new techniques could be op-
timized, so that they complement the possibilities of impu-
tation technologies more optimally. For example, the use of 
probes, restriction enzymes, multiplexing, and inference 
(e.g., DNA Sudoku (Erlich et al. (2009))) could be further 
optimized, so that the user has control to the degree to 
which a pair of individuals overlap in their resulting low-
coverage sequence reads.  

 
Discussion on the Steps in  

a Sequence Pipeline 
 

It is important to remember that NGS data is not 
simply an increased number in SNP density as compared to 
SNP arrays. This is because SNPs on arrays are ‘ascer-
tained’, i.e., they are discovered in a sample of individuals 
and chosen based on frequency (usually high MAF SNPs 
are chosen) and later these SNPs are genotyped in the sam-
ple under study. The effect of ascertainment in GS has not 
been studied in detail, although simulations show that SNP 
density and the demographic history of the species (primari-
ly admixture events) have an important influence on how 
different will be genomic relationships computed with 
either ascertained SNPs or sequence (Perez-Enciso (2014)). 
A second, normally overlooked, reason that makes NGS 
data different from array genotypes is that the final set of 
NGS-based SNPs is very sensitive to the used options in the 
bioinformatics pipelines. For instance, standard SNP calling 
algorithms like samtools and GATK are biased towards the 
reference allele, especially at low depth. This may result in 
biased genotype calls. To remedy this, reference independ-
ent SNP calling algorithms are recommended (Nevado et al. 
(2014)). However, it is expected that the accuracy of geno-
type calling algorithms will increase as data sets increase in 
size. 

 
Infrastructure and Human  
Resources Requirements 

 
While sequencing costs are declining, this may not 

be so for the required bioinformatics infrastructures. First, 
NGS analyses are not, as of today, standard and completely 
automatized. This is resulting in a strong lack of specialized 
personnel with sufficient skills in both bioinformatics and 
genomic selection. Future animal breeding educational 
programs should take these two angles in consideration. 
Simultaneously, it is unlikely that raw NGS data generated 
throughout the world would be easily transferred with 
enough speed between labs. It is much more likely that 
bioinformatics analyses, once agreed and standardized, will 
be carried independently and then required information 
(e.g., variant files) merged. This process could be done 
iteratively with intermediate files being transferred via 
cloud services. 

 
 

 



Deriving Breeding Benefit from Huge  
Volumes of Sequence Data 

 
Genomic selection is now implemented in the ma-

jor commercial breeding programs globally. The economic 
value of these programs will result in huge data sets being 
generated, and if advances in imputation and sequencing 
methodologies evolve sufficiently, it will be possible to 
generate sequence information for all of the individuals in 
such data sets. Analysis of such huge data sets will enable 
more of the genetic variation to be finely mapped directly 
and this could open up several new ways to increase the 
rate and sustainability of genetic gain in breeding programs 
including the use of de-novo mutations, the use of genome 
editing, and the use of inflated recombination rate.  
 
Box 4. Use of genome editing for quantitative traits in 
livestock 
Simulation 
Ten chromosomes, each 1 Morgan in length. 50 generations 
of selection. Each generation consists of 500 males and 500 
females. In each generation 50 sires and 500 dams were 
selected using genomic breeding values. Training set for 
genomic prediction consisted of the 1,000 individuals in the 
previous generation, genotyped with 20,000 SNP based on 
ridge regression. 
Results 

	  
Figure 2. Response to selection when combining ge-
nomic selection to first select sires and then various 
numbers of genome edits on each of the selected sires. 
Conclusions 
Genome editing can complement genomic selection for 
quantitative traits. Further details are described in Jenko et 
al. (2014).  
 
 

Using De-Novo Mutations in Breeding Programs 
 

It is clear by now from selection experiments that 
exhausting genetic variability is almost impossible. Alt-
hough several reasons have been invoked (epistasis among 
them), a plausibly important one is newly arising mutations. 
Every mammalian gamete is expected to bear ~30 new 
alleles (Kong et al. (2014)), i.e., the total amount of varia-
tion entering each year into any breeding scheme is non 
negligible. Most of these new variants will be lost, due to 
drift or selection against deleterious effects, but those that 

may have been targeted by selection will increase in fre-
quency (in proportion to Ne × s, where Ne is effective pop-
ulation size and s, selection coefficient, i.e., the smaller the 
effective size the less effective selection is). These new 
variants will not be tagged by any SNP arrays; yet, they 
could be discovered with sequence data, in theory, and even 
imputed (see above). It can be hypothesized that, as se-
quence data is collected through generations, careful longi-
tudinal analyses may reveal arising new mutants that could 
provide a competitive advantage to a specific breeding 
scheme. 
 

Using Genome Editing in Breeding Programs 
 

Genome editing (GE) is a technology that enables 
modification of genetic material in targeted ways (Niu et al. 
(2014); Cong et al. (2013)), for example single nucleotides 
can be targeted and modified with high accuracy. In breed-
ing programs one use of GE could be to repair a small 
number of undesirable alleles in individuals that have oth-
erwise high breeding values. Such an approach could make 
GE very complementary to GS. Individuals could be first 
selected on the basis of GS and then have some of their 
unfavorable alleles “repaired”. The simulations in Box 4 
show that using genome editing to “repair” even a modest 
number of unfavorable alleles in selected sires can give a 
major increase in the rate of response to selection in com-
parison to genomic selection, even for polygenic traits. 
However, to make GE work in practice for polygenic traits 
accurate fine mapping of causal variants is needed. Se-
quencing huge data sets may enable this.  
 

Using Higher Recombination Rates  
in Breeding Programs 

 
The amount of genetic variation available in a 

breeding program is affected by the number of causal vari-
ants, their frequency and size, and the degree to which they 
are linked to each other. The amount of genetic variation is 
one of the factors that affects the rate of genetic gain in a 
breeding program. During meiosis the rate of recombination 
is low and this limits the amount of standing genetic varia-
tion that is released for selection in each generation. Re-
combination is partially under genetic control (Kong et al. 
(2014)), thus it can be increased through selection. If care-
fully managed, this could lead to an increased response to 
selection. The simulations in Box 5 show that for a given 
selection intensity the rate at which genetic variation is 
exhausted is lower when the rate of recombination is high-
er. Using a grid search, a pair of scenarios was found (one 
with a high recombination rate and high selection intensity, 
the other with a lower recombination rate and lower selec-
tion intensity) in which the rate of loss of genetic variance 
across multiple generations of selection was almost identi-
cal. Because the scenario with a higher recombination rate 
could sustain higher selection intensity, the resulting re-
sponse to selection across multiple generations was much 
higher. To make higher recombination rate work in practi-
cal breeding programs huge data sets are needed. Huge data 
sets are needed, because when recombination rate is higher, 
the genomic predictions can no longer depend on linkage 
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and long-range correlations between markers and causal 
variants. With higher recombination rate, predictions would 
require that the effects of direct causal variants be much 
more finely mapped than is currently achieved. 

 
Box 5. Use of increased recombination rate in livestock 
breeding 
Simulation 
One chromosome. 20 generations of selection. Genome 
length ranged from 1 Morgan to 10 Morgans, with selection 
intensity from 10% to 1.25%. A grid search was performed 
to find a pair of scenarios that had identical patterns of loss 
of genetic variation across the 20 generations of selection 
but different selection intensities and recombination rates.  
 
Results 
The scenarios with genome length of 1 Morgan with a se-
lection intensity of 5% resulted in a loss of variance across 
20 generations of selection that was almost identical to a 
scenario with a genome length of 10 Morgans and a selec-
tion intensity of 1.25% (Figure X). The higher Morgan 
scenario resulted in a much higher rate of genetic gain both 
in the short and long term. 
 

 
Figure 3. Loss of variance across generations 
	  

	  
Figure 4. Response to selection across generations 
	  
Conclusions 
Increasing recombination rate leads to faster genetic pro-
gress in the short and longer term. Further details are de-
scribed in Mészáros et al. (2014). 
 
 

Conclusions 
 

We foresee that genomic selection 2.0 will domi-
nate the future breeding industry. This implies availability 
of huge sequence datasets with the possibility of finely 

mapping large proportions of the genetic variation directly 
to its causal variants. To capitalize on this for faster and 
more sustainable genetic progress new breeding programs 
designs that make use of techniques such as increasing 
recombination rate, utilization of de-novo mutations, and 
genome editing will be needed. Genomic selection 2.0 will 
need new tools and techniques to cost effectively generate 
and analyze huge volumes of data. Single sperm sequenc-
ing, new ways of performing low-coverage sequencing and 
new imputation algorithms will need to emerge. 
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