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ABSTRACT: Use of genomic information to directly se-
lect for identified QTL has essentially failed, working only 
for traits affected by one or a few QTL.  We resort to addi-
tive statistical fits and empirical extrapolation, with no in-
ference of mechanism let alone identification of QTL geno-
types.  Although this works very well for many scenarios, 
we could generally do better, especially for traits involving 
high levels of non-additive variation.  However, even in 
these cases we can probably only work with traits of rela-
tively few QTL.  There may be some hope here, if QTL 
interacting strongly masquerade as many more QTL under 
our additive statistical fits.  Biologically inspired mechanis-
tic models may compete favourably with statistical models 
involving epistatic parameters, but great effort would be 
involved.  There is an emerging need for systems to ensure 
ongoing phenotyping for genomic calibration, and pro-
posals for this are discussed.  The development of in-vitro 
reproductive technologies would greatly increase the impact 
of genomic information, with selection between zygotes 
and even between gametes providing new levels of genetic 
information and gain.   
Keywords: Genomic Selection; Gene interaction; Epistasis; 
Biological modeling; Reproductive technologies 
 
 

Introduction 
 

As animal breeders we are principally engaged in 
making genetic change.  We do this through the passive 
route of managing animal selection and mate allocation, 
although there are options to take the active route involving 
recombinant DNA.  This paper focuses on the passive 
route. 

 
Using the passive route to making genetic change 

we must exploit existing genetic variation.  We have classi-
cally used this variation as expressed in phenotype to build 
systems for making genetic change, but we now have ge-
nomic information to do this with potentially higher fideli-
ty.   

 
There are some benefits of genomic information 

that are not covered here, such as estimating breed compo-
sition, pedigree inference and verifying parentage. This 
paper concentrates on the extent to which genomic infor-
mation could conceivably be used to more effectively make 
genetic change, and this of course must involve some con-
jecture.  
 
 
 
 

What could genomic information tell us? 
 
For simplicity, let us assume that we have full se-

quence information for the nuclear chromosomes for all 
animals of interest, and this is our ‘genomic information’.  
To help identify possible limitations in the value of ge-
nomic information, we can ask four questions, and make 
associated comments: 

 
1. To what extent does nuclear DNA dictate ge-

netic merit of the host individual?  We ask this question 
because it relates to the asymptotic value of genomic in-
formation. 

The phenotypes of the extranuclear organelles will 
impact both genetic merit and environmental deviations.   

 
DNA methylation, histone packing and chromo-

some folding patterns will impact on expression of genetic 
merit.  These things could be largely dictated by nuclear 
DNA, but possibly the nuclear DNA of parents and other 
ancestors as well as of the host itself. 

 
If present, GxE interaction will render genetic 

merit dependent on the environment, for identified and uni-
dentified environmental components. 

 
The answer to this question is probably that the 

great majority of genetic variation is dictated by nuclear 
DNA. 

 
2. To what extent does nuclear DNA dictate 

transmissible genetic merit of the host individual?  We 
ask this question because it relates to the asymptotic value 
of genomic information under simple breeding program 
designs that exploit additive effects alone. 

	  
Transmissible can only be defined with knowledge 

of the target population.  For progeny, some epistatic ef-
fects are included, for distant descendants under random 
mating epistatic effects are essentially absent. 

 
Unlike the previous question, it is probably not 

possible to give a mechanistically derived answer to this 
question – it depends on factors other than biological mech-
anism. 

However, the answer to the previous question can 
be used here for most simple breeding designs - a fraction 
of full genetic merit can be transmitted.  In terms of varia-
tion in full genetic merit, that fraction is narrow-sense di-
vided by broad-sense heritability, h²/H². 

 



3. To what extent can genomic information in-
form us about the genetic merit of the host individual? 
This depends critically on the trait(s) involved.  Simply-
inherited traits involving mutations at one or a few loci can 
be fully informed.  However we currently perceive most 
production traits to involve many loci – they are complex 
traits. 

 
For complex traits we could make empirical statis-

tical fits, typically using a linear model with sequence in-
formation and a range of additive and non-additive effects 
on the right-hand side.  But we could also make mechanis-
tic fits, using biological models of trait expression.  The 
former is limited in power but simpler to apply, the latter is 
asymptotically perfect (where the model adopted reflects 
life itself) but can be hopelessly challenging.  The contrast 
between these two will be discussed later. 

 
4. To what extent can genomic information in-

form us about the transmissible genetic merit of the host 
individual?  We currently use statistical fits based on the 
average effects of alleles, with few exceptions, and so this 
question is now being answered routinely through estimates 
of accuracy of genomic estimates of breeding value 
(gEBVs).  Answers to the first three questions would help 
us to understand the potential value of deviating from this 
course, accommodating dominance and epistatic effects in 
our statistical fits, or indeed exploiting some form of mech-
anistic fit. 

 
Estimating and exploiting  

non-additive genetic effects 
 

If we find that the answer to question 4 is close to 
100% accuracy of gEBVs, for traits of interest, then the end 
of the road has not necessarily been met.  This is only the 
correlation of the criterion to additive genetic merit. 

 
Consider traits showing strong non-additive vari-

ance, such as fertility traits in dairy cattle. Palucci et al. 
(2007) estimate variance components that lead to h² values 
of {0.1, 0.005, 0.011 and 0.067} and H² values of {0.74, 
0.049, 0.04 and 0.343} for traits {Age at first calving, Heif-
er non return rate, cow non return rate and interval from 
calving to first service}.  In this case H² values average 6.5 
times h² values! 

 
We are unlikely to fully capitalise on this extra 

source of merit, for reasons related to: finding the infor-
mation required; and limitations in what can be achieved in 
breeding program design.  However, it certainly seems 
worth investigation! 

 
We can use genomic information to estimate non-

additive effects using statistical fits.  This is done for intra 
marker-locus dominance by Zeng et al. (2013).  However 
the good approach adopted seems unlikely to cover epistatic 
effects across the genome without masses of data.  The 
Kernel regression method of Gianola et al. (2008) can give 
some angle on genome-wide epistatic effects, through man-
agement of the relationship between genetic distance and 

covariance for epistatic effects.   However this approach 
seems unlikely to capture strong inter-locus epistatic effects 
that seem likely for many traits – life is too complex for 
them to be unimportant. 

Can we use mechanistic fits?  This essentially 
means “building biological models of gene action and inter-
action - models which have the power to predict ideal geno-
types across many loci. This is quite different from the cur-
rent wide use of biometrical models to predict genetic val-
ues - biological modelling provides a mechanistic predic-
tion of ideal genotypes across loci, not an empirical extrap-
olation which is typical of current predictions of genetic 
values.  As QTL become identified at an increasing rate, 
there is the basis for an escalation of information on gene 
action and interaction.  This will help with the modelling of 
biochemical pathways, hormone-receptor interactions, etc.  
However, epistasis, homeostasis, and canalisation will 
make such modelling of life processes very complex in-
deed.” (Kinghorn, 1996).   

 
After two decades we still seem far from such 

dreams.  We need some understanding of how life works, 
and as such this is a very ambitious area.  Systems Biology 
has grown notably, but we need to connect this to genetic 
variation as revealed by genomic information.  Success in 
this area implies a somewhat finite number of QTL affect-
ing genetic variation, and current thinking is that most traits 
are affected by a very large number of QTL.  Accordingly, 
mechanistic approaches may well be restricted to the rela-
tively few traits thought to be controlled by few QTL. 

 
Coat colour is a simple example.  For many sys-

tems we have a pretty good understanding of the biological 
model, and many desired outcomes can be reached by only 
one or a few genotypic configurations of the loci involved.  
The task might then be somewhat different from improve-
ment of an additively inherited polygenic trait, as we now 
have an ideal genotype to target.  We could aim for the top 
of the hill, rather than climbing the prevailing steepest 
slope.  If the ideal genotype involves heterozygosity at one 
or more loci, then some structured breeding design will be 
required to optimally approach and maintain that genotype.  
Even without heterozygosity at the optimum, epistatic in-
teractions could be such that multiple lines would be in-
volved in developments towards fixation of ideal configura-
tion across loci. 

 
For traits involving a low to moderate number of 

QTL, phenotypic information is required ideally not just for 
the trait(s) of interest, but also for relevant low-level pheno-
types, such as levels of substrates and gene- and protein-
expressions involved in pathways towards trait expression.  
Models can be developed from different resources, includ-
ing both experimental intervention without consideration of 
genetic variation, and observation of the impact of different 
genotypes. 

 
Can we predict the ideal genotype? 

 
First we might ask, how far are we from the ideal 

genotype?  This was illustrated by Kinghorn (2011), with a 



simulated genome including 10,000 QTL with additive ef-
fects a sampled form a gamma distribution and dominance 
effects d sampled uniformly between 0 and a, but no epista-
sis. With no overdominance the ideal genotype is fully ho-
mozygous, and its merit is illustrated in Figure 1.  Progress 
over 25 generations is also shown in a program using ge-
nomic information to target total genetic merit in cross-
breds.  It can be seen that the ideal genotype is very much 
above the merit in the breeding program, and would only be 
approached after many hundreds of generations.  

Notable increase in heterosis is evident in the 
RRGS line (Figure 1) despite full homozygosity for the 
ideal genotype.  Conceptually, the steepest prevailing slope 
is being climbed, which exploits heterozygosity in the 
crossbred, rather than aiming directly at the top of the hill.  
Thus knowledge of the ideal genotype is here somewhat 
irrelevant. This illustration underlines that we need systems 
with relatively few QTL involved to make it worthwhile 
predicting and targeting the ideal genotype.  Even if the 
model of fit were correct, the way we use it is not, unless 
we fully account for both short-term and long-term objec-
tives and tactical methods to appropriately target them. 

 
Adding even moderate involvement of between-

locus interaction, it can be imagined that knowledge of the 
ideal genotype becomes even more irrelevant.  Average 
effects of allele substitutions could be considerably differ-
ent in the current population compared to the ideal geno-
type (shifting windows of genetic background – Barton and 
Keightly, 2002).  The exception may be cases with relative-
ly few QTL involved.  However, even with so few QTL, 
statistical models involving eg. aa, ad, da and dd terms for 
pairs of loci seems likely to be useful only for the prevail-
wing allele frequencies in the current populations.  These 
are not ‘cause and effect’ models based on perceptions of 
reality, but somewhat abstract fits based on associations.  
Thus epistatic effects and variance components estimated in 
this way could relate poorly to biological gene interaction 
(Carlborg and Haley, 2004). 

 
This is where biologically-inspired models may be 

more useful for predicting ideal genotypes and setting 
routes towards that goal: Relatively few QTL in finite sys-
tems, ideally with some prior understanding of the biologi-
cal systems involved. 

With no prior information there may be value in 
some form of network SNP-association analysis, whereby a 
search algorithm looks for groups of SNPs (possibly from a 
preselected set following more standard analysis) plus a 
non-linear network model that leads to a good fit to pheno-
typic data.  This could involve, for example, sets of differ-
ential equations using SNP genotypes as part of the inde-
pendent set of variables, with output being a liability score 
for phenotype.  An evolutionary algorithm would then find 
both the model and the parameters by maximising the cor-
relation between liability and observed phenotype.ww 
 

Ongoing calibration of  
genomic information 

 

The most likely visage for genomic selection in the 
foreseeable future is more of the same: Presumption of very 
wmany QTL for most traits of commercial interest and con-
sequent lack of ability to get a handle on these QTL per se.  
In this way, we use genomic information to track moderate-
ly large chunks of DNA.  Within a few generations these 
recombine to the extent that we cannot rely on old calibra-

 
Figure 1: Predicted merit for the best genotype (35.6 
units) in relation to a breeding program using recip-
rocal recurrent genomic selection (RRGS) for perfor-
mance in crossbreds (top line) derived from purebreds 
(bottom line).  The second and third line from the bot-
tom are purebreds and crossbreds under normal ge-
nomic selection, (From Kinghorn et al., 2011)ww. 



tions, and must maintain recording of phenotype and some 
form of ongoing calibration.  The perpetual genomic key 
only works for simply inherited traits. 

 
For closed breeding lines with Ne of say 50, we 

can get away with relatively few SNPs routinely genotyped 
in animals with phenotypes for calibration.  If we were to 
use a QTL mapping paradigm for genomic selection we 
could probably get away with many fewer QTL (say 3,000 
after imputation), but with many markers available, the 
SNP association paradigm seems to work sufficiently well. 

 
However for larger populations and migration 

across breeding groups, as in dispersed national evaluation 
programs for pigs, beef and sheep, we need extensive and 
ongoing phenotyping and genotyping within breeds.   This 
is an across-enterprise activity that was first launched large-
ly through support from governments and industry organi-
sations, and usually without understanding of the ongoing 
requirements.   So there is growing recognition of need to 
migrate this activity out of the public-good sector.  There is 
also a need to mitigate the reduction of phenotyping in in-
dustry that occurs with the success of genomic selection.  
This section considers two approaches. 

 
Service providers buy phenotypes and sell 

gEBVs.  In this scenario, service providers buy the pheno-
typic information of genotyped animals from breeders and 
producers. Pricing can be objectively set according to: 

 
• Breed and genetic position in the breed:  Higher 

price for less well covered breeds/lineages, and 
higher price for better gEBV sales prospects. 

• The traits included. 
• Quality of the phenotypes, e.g. as determined by 

deviation from their prediction based on their gen-
otype and the prevailing genomic key.  
 
The service provider uses the phenotypes and gen-

otypes to make gEBVs, and then sells these gEBVs to 
breeders. These gEBVs would probably be exclusive to the 
service provider.   The service provider can use the gEBVs 
to pay for phenotypes where possible. 

 
The service provider hosts an information mar-

ketplace.  In this scenario, a breeder would use a web site 
to order genomic tests, with the option to click checkboxes 
to choose the source(s) of phenotypes on high density geno-
typed animals to be used in the calculation of gEBVs for 
this breeder.  For whatever choice is made, the Genomic 
Relationship Matrix will be the same (~breed-
wide/national), and only the data vector will depend on 
choice, and there is a custom iteration to solve for the 
breeder’s gEBVs.  This is for a one-step approach, but spe-
cific genomic keys could be made under a Bayes approach - 
more computation but not a lot more complexity. 

 
Whenever there is a change in what source-

selection boxes are checked, there is an update on the cost 
of the phenotypic information and the predicted gEBV ac-
curacy it will yield.  This information can be displayed in 

an accuracy versus cost graph with each combination of 
sources chosen shown as a single point.  Presenting esti-
mates of accuracy in this way may seem risky, but it is sim-
ilar to predicting EBVs, as done today: breeders should 
know that accuracies are not perfect.  Of course, the service 
providers method would be published for scrutiny. 

 
The sources of information come typically from 

progressive breeders.  They now enter a market to sell ge-
netic information, not just genetic seedstock.  This is anoth-
er way to make money out of running a good breeding pro-
gram.  They sell their information based on figures (pre-
dicted contributions to accuracy for the prevailing custom-
er), and also based on their reputation – the same as for 
selling seedstock with EBVs. 

 
There is no basic constraint on pricing (the mar-

ketplace will determine that), but there is a pattern of pric-
ing that the system determines.  For example, for just one 
source of information chosen the full rate is payable, but for 
two or more sources chosen, there is a reduced proportion 
payable for each as a technical function of predicted contri-
butions to accuracy from each source. Sellers can opt to 
discount their base pricing for more distantly related target 
stock, and the system helps them to implement that sensi-
bly, but this would not be compulsory. 

 
Publically funded reference populations may in-

deed be suppliers, but likely to wind down their contribu-
tion over time.  This gives a natural and competitive basis 
to phase out public funding. There is no system of royalties 
and the likely associated suite of ploys by clients to get 
around the rules to increase their benefits and reduce their 
contributions.  Subject to control of cost patterns, the sys-
tem is a free market, with increasing incentive for progres-
sive players to supply information as the overall supply 
diminishes (ie. a self-correcting system). 

 
Genomic information  
to manage diversity 

 
Genomic information can replace pedigree infor-

mation in estimating coancestry.  Moderate marker densi-
ties are sufficient to outperform pedigree information 
(Gómez-Romano et al., 2013).   

 
Clark et al. (2013) used genomic coancestry to 

show impact on the performance of optimal contributions 
selection in simulated breeding programs.  The one scenario 
to benefit is where there is genomic selection among full 
sibs.  With some emphasis on reduced coancestry, there is a 
tendency to co-select full sibs that are genomically less re-
lated compared to the average relationship for the family. 

This is already being implemented in such scenar-
ios using mate selection software that includes optimal con-
tributions features.  However, this approach would be of 
notable benefit if and when we start to make selections 
among large full-sib families of embryos or cell lines, and 
discussed below. 

 



The synergy between genomic selection  
and reproductive technologies 

 
Much of the value in boosting fecundity through 

reproductive technologies comes from reduced generation 
intervals.  The downside here is low accuracy evaluation on 
juvenile candidates, with phenotypic information coming 
typically from the parental generation. 

 
Genomic selection can play a major role here, giv-

ing accurate evaluation on juveniles that have genotypes but 
no phenotypes.  This does not require phenotypes on close 
relatives, and so we can contemplate selection among em-
bryos from juvenile females (Georges and Massey, 1991), 
with the nearest phenotypes being two generations away.  If 
we exercise extreme boosting to generate say 100 embryos 
per female, followed by recovery of selected individuals via 
nuclear transfer, due to lack of embryo viability, then selec-
tion intensity within families becomes large, and this is 
particularly valuable as most variation exists within fami-
lies.  In a simple test, the author calculates more than five-
fold increase in rate of genetic gain with 100 embryos test-
ed per juvenile female, compared to a normal genomic se-
lection program. 

 
We can also contemplate developing cycles of in-

vitro sexual propagation, including meiosis and zygote for-
mation, with selection among large numbers of zygotes or 
zygote cell lines using genomic information (Haley and 
Visscher, 1998; Kinghorn, 1996). 

 
Selection among gametes or haploid cell lines us-

ing genomic information would be even more powerful 
(Kinghorn, 2010).  This effectively accesses twice as much 
additive genetic variation due to covariances generated be-
tween the gametes that contribute to zygotes. Selecting the 
best sperm out of 10, and using this to fertilize the best egg 
out of 10, gives as much selection differential as selecting 
the best zygote out of 1000.  

 
This approach would also help exploit non-

additive effects, and the generation of targeted genotypes 
across many loci.   

 
This might not only be done for the purposes of 

genetic improvement. We could generate suites of targeted 
QTL genotypes that are predicted to provide weak-link in-
formation for biological model building – to iteratively 
build biological models of QTL (inter)action (Kinghorn, 
1996).   Of course, any such developments would have to 
compete with recombinant DNA techniques. 

 
Conclusion 

 
Genomic information promised silver bullets for 

simple and effective genetic improvement.  However we 
have come to realize that life is perhaps more complex than 
we had hoped, and that with current ideas and methods we 
have to maintain a high level of effort to exploit genomic 
selection in our breeding programs. 

 

With few exceptions, we exploit genomic infor-
mation not through biological mechanisms revealed, but 
through somewhat abstract statistical fits and associated 
extrapolations. 

 
However, there is still opportunity to dig deeper.  

Maybe, for some traits, epistatic interactions make the rela-
tively few QTL involved masquerade as very many QTL in 
the additive statistical analyses that we carry out.  Maybe 
we can discover this and start to build models that are more 
mechanistic in nature, and more transportable to other pop-
ulations and genetic backgrounds.  Such developments do 
not seem to be just around the corner. 

 
The development of in-vitro reproductive technol-

ogies would greatly increase the impact of genomic infor-
mation.  However, we would need to have frequent realisa-
tions of in-vivo animals and their measured phenotypes to 
maintain genomic accuracies and stay on course. 

 
In any event, we will need to increase and main-

tain effort to implement appropriate breeding program de-
sign to both exploit new opportunities, and to help maintain 
genetic diversity and economic viability. 
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