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ABSTRACT: Genomic selection in UK dairy goats is in its 
initial stage. One of the main challenges is the small size 
and structure of the reference population (mixture of males 
and females). The objective of this study is to estimate ge-
nomic breeding value for milk yield in dairy goats. The 
research was based on data provided by two farms in the 
UK comprising 590,409 milk yield records on 14,453 goats. 
The pedigree contained 30,139 individuals. In total 1960 
animals were genotyped with Illumina 50K caprine chip. 
BLUP-SNP and single-step approach were performed on 
the data and the two methods were compared. The highest 
accuracy was obtained with the single-step method. The 
results indicate that this method provides the best accuracy 
for populations with a small number of genotyped individu-
als, where the number of males is relatively low, and fe-
males are predominant in the reference population. 
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Introduction 
 

Genomic selection has become routine in many 
species such as dairy and beef cattle. Thanks to exchange of 
genotypes between countries, reference populations for 
those species are large consisting of thousands of bulls with 
high reliability breeding values. This allows predicting ge-
nomic breeding values for young animals, which have no 
phenotypic records, with high accuracy. In the case of dairy 
goats, the breeding industry is not so well developed world-
wide. Routine breeding value estimation is carried out in 
such countries as Canada, France, US, and Norway (Bé-
lichon et al. 2000; Montaldo and Manfredi 2002). Currently 
genomic selection in dairy goats has been introduced only 
in France (Carillier et al. 2013) using 2810 genotyped 
Saanen and Alpine goats. In the UK, the number of geno-
typed goats is also relatively small which poses certain re-
strictions with respect to the estimation of genomic breed-
ing values. The accuracy of the methods that use only phe-
notypes of the genotyped animals, and ignore the records of 
the non-genotyped part of the population (GBLUP, BLUP-
SNP) is limited when the reference population is small. 
Therefore, an alternative approach is considered, which 
integrates all of the available phenotypic, pedigree, and 
genomic information in a single step procedure (Legarra et 
al. 2009; Misztal et al. 2009; Christiansen and Lund 2010). 
This approach has been regarded as computationally de-
manding in the case of large datasets and complex models. 
However in goats, the amount of data used in genetic eval-
uations is considerably lower than that of dairy cattle. 
Moreover the method is easy to implement as it can use raw 
phenotypic records without the need to calculate de-
regressed proofs. It also facilitates the evaluation of all an-

imals (with and without genotypes) simultaneously. The 
objective of this study was to evaluate BLUP-SNP and sin-
gle-step approaches for the estimation of genomic breeding 
values in dairy goats. Additionally, the level of linkage dis-
equilibrium in the reference population was investigated. 

 
Materials and Methods 

 
Phenotypic data. The lactation data were from 

two separate farm units in the UK owned by a single farm-
ing business. A more detailed overview of the lactation data 
and genetic parameters is described by Mucha et al., 2014. 
The dataset comprised 590,409 records on 14,453 dairy 
goats kidding between 1987 and 2013. The population was 
created in 1985 by crossing three breeds: Alpine, Saanen, 
and Toggenburg. There was no particular crossing strategy. 
In each generation the best performing animals were select-
ed for breeding and as a result, a synthetic breed was creat-
ed. The breed composition of the animals was not recorded, 
and thus could not be included in the analysis. To mitigate 
this problem SNP information was used to assess breed 
composition of the animals. A total of 1961 goats from the 
same population were genotyped with Illumina caprine 50K 
chip (Illumina Inc., San Diego, CA; Tosser-Klopp et al. 
2012). Clustering based on principal component analysis, 
performed with SNP & Variation Suite v7.7.8 (Golden He-
lix Inc.), did not reveal any major distinct groups. This sug-
gests that the analysed population is mostly homogenous 
and therefore breed was not included as a factor in the anal-
ysis. The pedigree file contained 30,139 individuals, of 
which 2,799 were considered as founders. There were 296 
sires and 12,468 dams in the pedigree. The dataset con-
tained test day records of milk yield, along with information 
about lactation number (1 to 6), farm (2 farms), age at kid-
ding (12 to 90 months), year (1987 to 2013) and season of 
kidding [summer (June to August), autumn (September to 
November), winter (December to February), and spring 
(March to May)]. Fat and protein content were not included 
in these first analyses, as they have only recently started to 
formally record these traits. 
 

Genotypes. Two thousand animals were selected 
for the reference population. The selection of candidate 
animals was done based on two criteria: average daily life-
time yield (ADLY), and the genetic relationship between 
the animals. The process was optimized in such a way as to 
select animals from the upper (group 1) and lower (group 2) 
tail of the distribution of ADLY. Animals had been selected 
so that the relationship within the two groups was mini-
mized, and relationship between the two groups was max-
imized. This was undertaken using software package Coro-



na (Brian Kinghorn, pers.comm). Mean relationship of an-
imals in the reference population was 0.03. 
 

Animals were genotyped with the Illumina 
Caprine 50K BeadChip (Illumina Inc., San Diego, CA). 
After filtering out SNP that were not in Hardy-Weinberg 
equilibrium, had minor allele frequency below 0.05, were 
monomorphic, had call rate below 0.95 or the GC content 
below 0.6, the dataset contained 47,306 markers. Addition-
ally, animals with a call rate below 0.9 were removed from 
further analyses. This resulted in 1902 animals in the data 
set that were born between 2003-2012. 
 

Linkage disequilibrium. Linkage disequilibrium 
(LD) was measured as r2, which is the squared correlation 
of the alleles at two loci (Hill and Robertson 1968): 
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Where f(AB), f(A), f(a), f(B), f(b) are observed frequencies 
of haplotype AB and of alleles A, a, B and b, respectively. 
LD was calculated for all syntenic marker pairs (markers 
from the same chromosome). SNP markers that could not 
be mapped to any chromosome were excluded from these 
analyses. 

 
Estimation of genomic breeding values. Two 

methods were used to estimate genomic breeding values 
(GEBV). The first method was BLUP-SNP where de-
regressed sire and female proofs were used as phenotypes. 
The software package MIX99 (Lidauer et al. 2011) was 
used for the de-regression, using a full animal pedigree with 
effective daughter contributions used as weighting factors. 
SNP effects were estimated with the following statistical 
model: 
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where: yi is the de-regressed proof, µ is the overall mean, vi 
is the residual polygenic effect of i-th goat (10% of additive 
genetic variance), zij is the genotype value coded as 0, 1, or 
2 for homozygote, heterozygote, and the opposing homozy-
gote, uj is the random regression coefficient for j-th SNP, 
and ei is the residual effect. 
 

The second approach to calculate GEBV was 
based on the single-step method - HBLUP (Legarra et al. 
2009; Misztal et al. 2009; Christiansen and Lund 2010). 
The software package BLUPf90 (Misztal et al. 2002) was 
used to fit the following random regression model: 
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where y is the vector of test-day observations; b the vector 
of fixed effects consisting of herd test day, year-season, age 
at kidding, and fixed lactation curves modelled by fitting 
Legendre polynomials (Kirkpatrick et al. 1990) of fourth 
order; a is a 1x3 vector of random regression coefficients 

(Legendre polynomials of second order) for the animal ef-
fect; p is the 1x3 vector of random regression coefficients 
(Legendre polynomials of second order) for the permanent 
environment effect; e is the vector of random residual ef-
fect. The matrix X is the incidence matrix for fixed effects; 
Z and W are matrices of Legendre polynomials of days in 
milk of second order for random animal and permanent 
environment effect, respectively. Random effects were as-
sumed to be normally distributed with zero means and the 
following covariance structure: 
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Where U and P are 3 x 3 (co)variance matrices of the ran-
dom regression coefficients for the animal and permanent 
environment effects respectively, I are identity matrices, 
and H is the relationship matrix calculated using Van 
Raden’s (2008) genomic relationship matrix G and pedi-
gree relationship matrix A as: 
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Where S is a centered incidence matrix of SNP genotypes, 
n is the number of SNP markers, and pi is allele frequency 
of marker i. The inverse of H is: 
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Where 1
22
−A  is the inverse of pedigree relationship matrix 

for the genotyped animals. 
 
Accuracy of genomic breeding values. The ref-

erence population was divided into a training and a valida-
tion set consisting of 1474 (1410 females and 64 males) and 
305 animals (302 females and 3 males), respectively. Ref-
erence animals were born between 2003 and 2010, and had 
a minimum reliability of EBVs of 0.76. Validation animals 
were born in 2011 and had a minimum reliability of EBVs 
of 0.69. Females in the reference and validation set had 1 to 
6, and 1 to 2 lactations respectively. The accuracies of ge-
nomic predictions were calculated as correlations between 
de-regressed proofs (DRP) and GEBVs from HBLUP, or by 
direct genomic values (DGV) using BLUP-SNP of valida-
tion animals. Additionally, the accuracy of pedigree-based 
predictions (PBLUP) were calculated as correlations of 
DRP and EBV of the validation animals. The EBVs from 
PBLUP were obtained from the same model as for HBLUP, 
but the H matrix was replaced with the pedigree-based A 
matrix. The gain of using SNP information was calculated 
as the difference between accuracy of HBLUP and PBLUP. 
Additionally, to verify the gain in accuracy of the non-



genotyped candidates in HBLUP, the genotypes of 100 an-
imals from the validation data set were removed (HBLUP-
cut). The accuracy was then compared with the accuracy 
calculated for the same 100 animals with genotypes 
(HBLUPall). 

 
Results and Discussion 

 
Average r2 among syntenic markers as a function 

of marker distance is presented in Figure 1. The largest de-
cline of LD was for distances below 100 kb. In the studied 
population the mean r2 at 50 kb (distance between two 
SNP) was 0.18. LD declined from 0.14 at 100 kb to 0.09 at 
1000 kb, and 0.07 at 2000 kb. The extent of LD found in 
the current population is similar to that reported by Carillier 
et al. (2013) in the French pure bred dairy goats (r2 of 0.17 
at 50 kb) but higher than the value obtained for the cross-
bred population (r2 of 0.14 at 50 kb). This might indicate 
that this population is mostly homogeneous with respect to 
breed composition, and can be treated as a synthetic pure-
breed. The average LD in dairy goats appears to be lower 
than that reported in dairy cattle (0.20-0.23 at 40 kb, Khat-
kar et al. 2008; de Ross et al. 2008; Habier et al. 2010) or 
pigs (0.47-0.49 at 30 kb, Uimari and Tapio 2011). 

 

 
Figure 1. Linkage disequilibrium  

 
 

Table 1. Correlations (R), regression coefficients (b1) 
between de-regressed proofs (DRP) and parent average 
(PA), EBVs from PBLUP, DGVs from BLUP-SNP, and 
GEBVs from HBLUP for animals in the validation pop-
ulation. 
Method b1 R 
PA 1.08 0.45 
PBLUP 1.27 0.58 
BLUP-
SNP 0.29 0.36 

HBLUP 0.99 0.61 
HBLUPall 1.13 0.56 
HBLUPcut 1.30 0.54 
HBLUPcut = same as HBLUP, but genotypes of 100 animals from the 
validation removed 
HBLUPall = same as HBLUP but regression and correlation was for the 
100 validation animals without genotypes in HBLUPcut 
 

The accuracy of the genomic predictions was 0.36 
and 0.61 for BLUP-SNP and HBLUP, respectively (Table 
1). Low accuracy of BLUP-SNP could be due to having 

mostly females in the validation set and therefore less pre-
cise information. BLUP-SNP not only had a considerably 
lower accuracy, but also resulted in a low regression coeffi-
cient of 0.29. This suggests that DGV obtained from this 
method overpredicts the DRP. GEBVs from HBLUP appear 
to be less biased, as the regression coefficient was 0.99. The 
gain of using SNP information expressed as the difference 
between accuracy of PBLUP and HBLUP was 5.2%. The 
accuracy of young animals increased by 3.7% when com-
paring their evaluation with and without all genotypes 

 
Conclusion 

 
Single-step approach resulted in higher accuracy 

of genomic breeding values in comparison with BLUP-
SNP. This method can be recommended for breeding pro-
grammes with reference populations containing a small 
number of sires supplemented with females. 
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