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ABSTRACT: Epidemic dynamics are modelled using a 
variant of the SIR (susceptible-infectious-recovered) model. 
We investigate scenarios in which a single (dominant) locus 
affects animal susceptibility, infectivity and recovery rates. 
In particular, we find that genetic differences in 
susceptibility and recovery can be readily inferred using 
data from a single epidemic, but that infectivity requires 
information from multiple or replicated epidemics. 
Inference from partially observed epidemics was conducted 
within a Bayesian framework using Markov chain Monte 
Carlo (MCMC). The method is tested using simulated data 
generated by applying the Doob-Gillespie algorithm to a 
suitable epidemic model. Limits in our ability to carry out 
inference were explored in the case when complete 
epidemic data is known, and theoretical expressions are 
presented for expectations of parameter accuracy. The 
practical utility of the approach is subsequently 
demonstrated using data for which infection times are 
uncertain or completely unknown.   
Keywords: epidemic; infectivity; susceptibility; Markov 
chain Monte Carlo 
 

Introduction 
Reducing the impact of disease is of fundamental 

importance not only for the welfare of animals, but also in 
terms of the economic costs incurred by farmers. With the 
reduction in the cost of genetic testing, selective breeding 
based on the presence or absence of given alleles has 
become increasingly feasible. Identifying which alleles help 
to reduce disease liability is a challenging problem because 
data from epidemics can often be incomplete and the 
measurements taken from the system are often complex. 
The aim of this paper is to numerically and analytically 
investigate the circumstances under which epidemic data 
can be used to quantify single (dominant) locus effects, and 
to determine which parameters can be inferred.  

 
Materials and Methods 

Model. A common approach to modelling micro-
parasitic epidemics is to use the stochastic SIR process (e.g. 
Keeling and Rohani (2007)) in which the state of the system 
is described by three integer valued variables S, I and R, i.e. 
the number of susceptible, infected and recovered 
individuals within a population. Two possible events can 
occur probabilistically: an infection (which causes a 
transition whereby S is reduced by one and I is increased by 
one) or a recovery (I is reduced and R is increased). In the 
Markovian implementation inter-event times are 
exponentially distributed. To incorporate genetic effects 
into the standard SIR model we consider that there are two 
subpopulations, labelled + and -, that differ in their 
phenotypic characteristics. 

 
Figure 1: (a) The compartmental model. S, I and R refer to 
susceptible, infected and recovered, in and re refer to 
infection and recovery events, and + and – denote two 
subpopulations that differ in their phenotype. (b) An 
example of the system dynamics. 

 
Figure 1(a) shows the proposed model, which 

consists of two coupled SIR processes. Infection and 
recovery events (corresponding to the four arrows in the 
diagram) have rates given by: 
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Where the infection process is driven by a force of infection  
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which determines the average rate at which susceptible 
individuals acquire the disease. F depends on the number of 
infected individuals within the two subpopulations I+ and I- 
modified by parameter δI to differentiate the infectivity of 
the two genotypes. The exponential dependency on δI is 
used to ensure that F is strictly positive. Its form is chosen 
such that, for small values at least, δI represents the 
fractional change in infectivity between the subpopulations 
(e.g. δI=0.1 implies that the + genotype is ca. 10% more 
infective than the - one). Differences in the susceptibility 
and recovery rates are similarly incorporated in Eq.(1.1) 
through parameters δS and δγ, respectively. 

The data in this study was generated using the 
Doob-Gillespie algorithm, a standard stochastic simulation 
technique for generating event sequences from Markovian 
compartmental models. A typical output is shown in Fig. 
1(b). Here the initial population is N=100, with a fraction 



p+=0.6 of the animals having the + genotype. At time t=0 
one of the animals becomes infected and this animal starts 
to infect other individuals. In the case shown the process 
rapidly leads to an explosion in infection (i.e. an epidemic) 
until the susceptible population is exhausted, at which point 
the remaining infected animals recover.  

Bayesian inference. We take the event data and 
attempt to estimate the values for the model parameters that 
could have plausibly generated it (i.e. parameter inference). 
The starting point for this is the complete likelihood (see 
Walker et al. (2006) for a derivation): 
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which represents the probability that the model produces a 
particular event sequence ε given a set of system 
parameters θ=(β,γ,δS,δI,δγ) that define the event rates in 
Eq.(1.1), with Ρ being the sum of these rates. This form 
reflects the structure of the model and in particular the 
exponentially distributed nature of inter-event times. The 
product in Eq.(1.3) runs over all Ne events in the sequence 
ε. The quantities ti and εi represent the time and type (i.e. 
in+, re+, in-, re- in Fig. 1(a)) of each event with the 
corresponding event rate  given in Eq.(1.1). 

In reality the complete event sequence is unlikely 
to be available, but within the Bayesian framework 
inference of both the event sequence and the parameters 
values from incomplete data y is possible based on the 
posterior distribution (e.g. Lee (2004)):  
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Prior information about the system parameters is 
incorporated via π(θ), and π(y|ε) is the probability that 
observation y is made given the actual system has event 
sequence ε. We considered three data scenarios for possible 
observations y made on the system: 
 

1. All events are exactly known. 
2. Only recovery events are known. Often, “recovery” 

can represent the death of animals, so this is 
pertinent when the only measurable quantity is the 
time at which animals die. 

3. Animals are periodically checked for disease. 
Infection times, therefore, are not known exactly but 
are confined. Recovery events are assumed known. 

 MCMC is used to generate samples from the 
posterior. Specially designed transitions, which allow the 
system to explore all of the potential parameter values and 
event sequences consistent with the observations, are 
accepted or rejected based on their Metropolis-Hastings 
probability (Hastings (1970)). This procedure generates a 
Markov chain in the space of parameters and event 
sequences which converges to the posterior distribution as 
the number of steps increases. In this study, an initial 104 
burn-in steps were discarded and the results presented are 
based on 106 MCMC iterations. The system parameters 
used were β=1, γ=0.1 and p+=0.5, and π(θ) was taken to 
be an uninformative flat prior.  

 

Results and Discussion 
Inference was performed under data scenario 1 

using a simulation of N=500 animals with parameter values 
δS=0.5 and δI=δγ=0. The solid line in Fig. 2 shows a 
typical probability distribution for the inferred values of δS. 
The true value, denoted by the vertical line, falls within this 
normally shaped profile, indicating that inference has 
successfully estimated the true parameter’s value. Of 
particular importance in this graph is the width of the 
posterior distribution, σS. If our null hypothesis is that there 
is no difference in the susceptibility between the two 
genotypes, this can only be rejected provided δS is 
significantly larger than σS. An estimate for σS, therefore, 
provides a useful guide as to how small a phenotypic affect 
can be observed given a particular set of data. 

 
 
Figure 2: The marginalized posterior distribution for the 
susceptibility difference δS (solid line) and infectivity 
difference δI (dotted line), for a typical epidemic. The 
vertical dot-dashed line indicates the true parameter value. 

 
This point is emphasized in Fig. 3, in which the 

crosses denote how σS varies with the number of animals. 
We find that to be able to detect a difference in 
susceptibility of 10% between the genotypes, it is necessary 
to have significantly more than 400 animals in the 
epidemic. Although we do not provide details of the 
derivation, when the complete epidemic history is known 
the likelihood Eq.(1.3) can be simplified using the Laplace 
approximation, and the following approximate analytical 
expression can be obtained: 
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where p+ represent the proportion of + phenotype in the 
population. This is represented by the dashed line in Fig. 3, 
which shows excellent agreement with the MCMC results.  
Additional analysis yields the following approximations: 
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which are the posterior standard deviations for β, γ, δI and 
δγ, respectively.  

Numerical results based on MCMC show that our 
Bayesian framework can reliably infer the parameters β, γ, 
δγ and δs, as well as accurately reproduce the posterior 
standard deviations in Eqs.(1.5) and (1.6). The only 
parameter that cannot be estimated is the infectivity, as 
illustrated by the very broad dashed curve in Fig. 2 obtained 



using numerical simulation (δI=0.5 and δS=δγ=0) and the 
fact that σI in Eq.(1.6) is infinite. Since the rates of infection 
for both genotype populations in Eq.(1.1) depends on F, 
and not on δI directly, any change in this force of infection 
affects both equally. Thus, the only way to measure 
differences in infectivity is to take data from multiple (or 
replicated) epidemics. Those epidemics in which there are 
more of the infective genotype will tend to proceed faster. 
MCMC simulations show that Bayesian inference can 
extract information from these correlations. Following the 
derivation of Eq.(1.5), for the case of multiple epidemics, it 
can be shown that 
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Here, M is the number of epidemics and σχ is the standard 
deviation (between epidemics) in their composition, as 
defined by χ=½-p+. Equation (1.7) is supported by 
inference based on simulated data (not shown). 

MCMC results from scenario 2, with only 
recovery times known, are shown by the circles in Fig. 3. 
We find that the number of animals needed to achieve the 
same accuracy from inference is significantly larger. For 
example, with perfect data 20 animals were needed to give 
σS =0.44, but this now increases by factor k=10 to over 200 
animals. The situation slightly improves (triangles) when  
system parameters other than δS are assumed known. 

 

 
Figure 3: The standard deviation σS in the posterior 
distribution for the inferred susceptibility difference δS as a 
function of the population size N. 1) Event data is known 
precisely (crosses), 2) Only recovery data is known 
(circles), and 3) Recovery data and other model parameters 
are known (triangles).  
 

Figure 4 shows results from scenario 3, in which 
the infective status of animals is checked at regular 
intervals. If an animal is found to be infected, it can be 
concluded that the actual infection time was at some point 
since the last check. Thus, partial information about 
infection is known in addition to the recovery times. In  Fig. 
4 the time between checks Δt is scaled by tav, which is the 
average time of infection for animals over the entire 
epidemic. The y-axis shows the factor k by which the 
population size must be increased under scenario 3 in order 
to achieve the same σS  as under scenario 1 where infection 
events are known exactly. The crosses show MCMC 

results, and when Δt becomes small k approaches 1, as 
would be expected. Perhaps surprising from this graph, 
however, is that even when measurements are made on the 
same timescale as the complete epidemic (i.e. Δt/tav≈1), the 
accuracy of the inference is only marginally degraded. 

 

Figure 4: The infectious status of animals is periodically 
checked with time interval Δt. This graph shows the factor k 
by which the population number needs to be scaled to give 
an equivalent accuracy as when exact infection times are 
known. tav is the average infection time. 

The work here focuses on dominant alleles 
impacting on phenotypic epidemiological traits. The 
general procedure, however, is readily extendible to 
additive or partial dominance cases. The two coupled SIR 
models in Fig 1(a) would then expand to three representing 
two homozygote and one heterozygote genetic states.  

 
Conclusion 

Using MCMC within a Bayesian framework we 
have shown it is possible to infer parameters from temporal 
epidemiological data, even when the times of infection are 
not directly observed. To be able to measure small differ-
ences in epidemiological traits it will be necessary to have 
data from many hundreds, if not thousands, of animals. 
Furthermore, to estimate infectivity accurately, data from 
many epidemics will be needed, or alternatively existing 
data needs to be supplemented with information about 
which animals infect which. Thus, many challenges remain.  
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