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Improving REML estimates of genetic parameters through penalties on correlation matrices
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ABSTRACT: Penalized REML estimation can substantially
reduce sampling variation in estimates of covariance matrices,
and yield estimates of genetic parameters closer to population
values than standard analyses. A number of suitable penalties
based on prior distributions of correlation matrices from the
Bayesian literature are described, and a simulation study is
presented demonstrating their efficacy. Results show that re-
ductions of ‘loss’ in estimates of the genetic covariance matrix,
a conglomerate of sampling variance and bias, well over 50%
are readily obtained for multivariate analyses of small samples.
Default settings for a mild degree of penalization are proposed,
which make such analyses suitable for routine use without
increasing computational requirements.
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Introduction

Estimates of genetic parameters are afflicted by sam-
pling variation, increasingly so with the number of traits con-
sidered. A sobering but realistic view is that, “Few datasets,
whether from livestock, laboratory or natural populations, are
of sufficient size to obtain useful estimates of many genetic
parameters” (Hill, 2010). Fortunately, estimates can be ‘im-
proved’ — i.e. modified so that, on average, they are closer
to the population values — by utilising additional knowledge.
This is inherent in Bayesian analyses through the assumed
prior distributions. For REML estimation, imposing a penalty
proportional to the logarithmic value of the prior densities on
the likelihood can yield analogous benefits.

Some Bayesian approaches to estimating covariance
matrices decompose these into variances and correlations with
separate priors, generally shrinking correlations towards zero.
Estimates of genetic correlations have been found to be often
close to their phenotypic counterparts (Cheverud, 1988). In ad-
dition, the latter are generally estimated much more accurately.
Hence, an alternative may be to ‘borrow strength’ by shrinking
the genetic towards the phenotypic correlation matrix. This
paper investigates the scope for REML estimation penalizing
correlation matrices.

Priors and penalties

Let R denote the correlation matrix corresponding to covari-
ance matrix X for g traits. Few families of density func-
tions for R have been considered, with most priors encour-
aging shrinkage of R towards an identity matrix, I. Barnard
et al. (2000) suggest uniform distributions, either for individ-
ual correlations, r;;, or jointly within the permissible space,
i.e. p(R) o< 1. These can be formulated as parameter extended

Inverse Wishart and Wishart priors with degrees of freedom
v = g+ 1 and scale matrix I, while v = 0 for the latter yields
Jeffreys’ rule prior (Zhang et al., 2006). Chung et al. (2013)
propose a weakly informative prior aimed specifically at penal-
ized REML estimation assuming a Wishart prior for 3 with
scale matrix (2w)~'I, incorporating information on individual
correlations r;;, believed to be close to a value of p;;, by multi-
plying with the density from a Normal distribution, N (p;;, %),
with suggested defaults of v =g + 2, w — 0 and 7 = 0.25.

More generally, unit diagonals and the requirement for
R to be positive definite make handling r;; challenging. This
can be alleviated by parameterizing to partial auto-correlations
(PAC), i.e. the correlations between traits i and j given the
‘intervening’ traits i+ 1 to j— 1
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with Ry j) = {ru}, r16j) = {ra}s 2y = {rp} fork, I =i+ 1
to j— 1, and Ry = [1 -, ;R3G Tmiip]. PAC fall in the
interval [—-1, 1] and are unconstrained otherwise. Daniels
and Pourahmadi (2009) assume independent shifted Beta pri-
ors for the PAC, 7;; o« B(a/,- s /3,7)‘ The authors show that
a;j =Bij = 1+(g—1- j+1i)/2 recovers the joint uniform prior
for R of Barnard et al. (2000).

Gaskins et al. (2013) model the variance of individual
PAC as a function of lag between traits, Var(r;;) = £|j — i~
with € € [O, 1] and y > 0, and use this to define a;; = §;; =
(I/Var(mj) - 1)/2 Setting jj =ﬂ,'j implies E[ﬂ'ij] =0. A
value 7;; # 0 is accommodated by setting 8;; = Ta;; with
T = (1-1i)/(1 + 75;), and a;; as chosen or calculated as

[4T/ (Var (m;) (T +1)%) = 1] /(T +1).

Penalties. The density functions suggested give penal-
ties based on Jeffreys’ rule prior, 7y,

P = 4 log R| ©)
and assuming shifted Beta priors on PAC

P = Z?=1Z(]I'=i+] IOEF(Q’U) + logl"(,Bij)
—logF(aij+ﬂij) + (a'ij+,8,~j— 1) 10g(2) (3)
— (@;j — Dlog(1 + m;) — (Bi; — 1) log(1 — 7;)

with I' (-) denoting the Gamma function.

Simulation study

Data. Records for g = 9 traits were sampled from mul-
tivariate normal distributions, assuming a balanced paternal
half-sib design comprised of s = 100 or 1000 sires families
of size 10. Population values for 60 cases, selected to repre-
sent an extensive range of possible (including many ‘difficult’)



scenarios with coefficients of variation for canonical eigenval-
ues from 0 to 170%, were obtained by combining 12 sets of
heritabilities with 5 correlation structures, referred to as C1 to
C5. Letrg;j and rg;; (i # j) denote the genetic and residual
correlations between traits i and j. Values were rg;; =rg;; =0
for C1, rg;; = 0.5 and rg;; = 0.3 for C2, rg;; = 0.7~ and
TEij = —-170.05i + 0.2 for C3, rGij = —0.8V-1 4+ 0.02i and
TEij = —0.2V-140.5 for C4, and rgij=reij=0.7ifi, j€[3,7]
and rg;; = rg;; = 0.3 otherwise for C5.

Analyses. REML estimates of genetic (X¢) and resid-
ual (3f) covariance matrices for each sample were obtained
fitting a simple animal model with means as the only fixed
effects, for different types of penalties:

1. P; as given in (2),

2. Py invoking the joint uniform of Barnard et al. (2000),
using the unconstrained parameterization through PAC,

3. Pp assuming the shifted Beta prior for PAC, shown in (3),
with fixed values fora =2, ..., 16, and

4. P as 3., but modelling scale parameters depending on lag
between traits, considering values of &€ = 0.05,0.1, 0.2 and
v=0,0.5,0.8,1,1.2.

All were examined imposing a penalty on genetic correlations

only and on both genetic and residual values, denoted by su-

perscript ‘+’. Both #p and #; were considered shrinking 7r;;

towards zero and towards values 7;; equal to phenotypic PAC.

A total of 500 replicates were carried out for each case.

Summary statistics. For each sample, the loss in esti-
mates was determined as (for X = G, E and P)

Ly (Ex, ﬁ:x) =1tr (2}12)() —log |2)_(12)(| -q 4)

with Xy the matrix of population values, 3y the correspond-
ing estimate, and Xp = 3 + 3. The Percentage Reduction
In Average Loss due to penalization was then evaluated as

PRIAL = 100 [1 - L; (Zx, 2%) /L (Zx. 29)] Q)

with 33% and 33 the penalized and unpenalized estimates of
Xy, and L;(-) the average loss over replicates. In addition,
the mean reduction in unpenalized likelihood due to penaliza-
tion (from its maximum for unpenalized estimates), AL, was
calculated.

Results

Mean PRIAL values and AL across the 60 cases for
selected analyses are summarized in Table 1. Overall, penal-
ization yielded dramatically ‘better’ estimates than standard
REML, especially for the smaller sample size, accompanied in
general by modest reductions in likelihood. For ¢ = 9 and 90
covariance components, for AL (absolute value) to be signifi-
cant at 5% error probability, it would have needed to exceed a
much larger value of 56.57.

Means hide marked differences for individual cases
— clearly penalties performed the better the closer the
prior matched the population parameters. Milder penal-
ties tended to achieve most of the benefits feasible whilst

Table 1. Mean PRIAL for selected penalties.

P* v 100 sires 1000 sires

¢ B Bp  ALYYG B B AL

Shrinking towards zero
Py ~ 55 28 1 -494 34 7 0 -1.23
Py - 57 50 1 -466 34 12 0 -121
P, — 64 35 3 905 39 9 0 -234
P} - 68 57 2 88 40 16 0 -231
Py 2 58 20 1 -169 32 4 0 -032
P} 2 59 45 2 -176 32 11 0 -0.33
P} 4 66 54 2 -541 38 15 0 -1.23
P} 6 68 57 2 -88 39 16 0 -230
' 5 64 36 4 -1979 37 3 0 -11.58
2' 10 71 39 4 803 46 15 1 -432
P 20 72 36 4 -693 45 10 1 -1.67
Py 5 67 51 -1 2373 43 10 -2 -11.11
Pyl 10 72 61 5 -13.77 48 22 1 -445
Pl 20 74 61 5 757 46 21 1 -1.79
Shrinking towards phenotypic correlations

Py — 48 45 0 293 29 8 0 -137
Py 2 41 5 -1 -172 26 1 0 -041
P 2 43 39 0 -181 26 9 0 -046
P 4 60 51 1 -383 34 11 0 -140
Pyl 5 67 61 2 -1388 41 13 0 -854
P20 10 62 54 1 453 35 13 0 -166
P10 67 60 2 -7.16 41 18 0 249
2% 10 68 62 2 -883 43 20 1 -335
2yl 10 68 62 2 988 45 21 1 411
P10 69 63 2 -10.89 46 21 1 -5.12
20 66 59 2 641 44 21 1 -1.82

* Penalty; superscripts give value of y for T Scale parameter @ for Pp,
£x 100 for %5 * Mean change in unpenalized log likelihood

Figure 1. PRIAL due to penalty 7} for o =

s=100
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reducing the risk of distorting estimates of phenotypic co-
variances due to over-shrinkage. Figure 1 shows the
distribution of PRIAL across cases for increasing values
of @ = B for penalty #3. While PRIAL values for

3 increased with a up to about 10, the higher values



Figure 2. Mean PRIAL from penalties 7; and Z;}

P B 2t Pt
1.2 64 68 72 66 71 66 67 64 67 69 66
1 64 71 72 67 72 66 66 63 67 68 66 ®
@
0.8 64 69 71 68 72 7 66 66 62 67 68 64 5'
0.5 64 68 68 69 71 70 65 65 59 67 67 61 o
0 63 . 64 58 67 67 59 63 . 60 44 66 62 46
?1 2 36 43 38 49 60 62 50 42 27 62 63 60
1 36 39 36 51 61 61 50 41 25 61 62 59
0.8 36 42 34 52 61 60 49 39 22 62 62 57

[enpisoy

0.5 36 39 30 53 60 56 47 35 17 62 60 53

0 34 33 20 55 55 45 42 27 6 59 54 M

0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
€

* Shrinkage towards 0 T Shrinkage towards phenotypic PAC

resulted in larger spreads in PRIAL for ¥ and thus Xp, and
more cases for which estimates for the latter were worse than
their unpenalized counterparts. Results suggest that a default
value of @ = 2 to 4 may be a sensible choice.

Penalties F; yielded the highest PRIAL values but re-
quired specification of two parameters, € and y. As shown
in Figure 2, means depended little on vy, i.e. more aggressive
shrinkage of PAC with increasing lag was not as important for
our population values as for the longitudinal data for which
this prior was originally proposed. A value of € ~ 0.1, equiv-
alent to assuming intermediate variability of PAC, may be a
suitable default value.

Penalties P and P; lacked parameters to regulate their
strength and thus did not require any choices. Their perfor-
mance was similar to some of the penalties on PAC, albeit
often accompanied by somewhat larger reductions in likeli-
hood. In particular, the simple penalty based on Jeffreys’ rule
prior — often flagged as an ‘improper’ prior — resulted in re-
markably good reductions in loss.

As observed previously for penalties on covariance ma-
trices (Meyer, 2011), penalizing both rg;; and rg;; increased
PRIAL for Xy without detrimental effects on 3. This held
especially for penalties which did not provide any feedback
mechanism on total covariances, as provided, to some ex-
tent at least, by shrinkage towards phenotypic correlations.
On the whole, no distinct advantage of shrinking correlations
towards phenotypic values rather than zero was apparent in
terms of mean PRIAL values. In part, this could be attributed
to very high PRIAL for cases with matching population values
(rgij = reij = 0) for the latter. However, shrinkage towards
phenotypic PAC generally resulted in less over-penalization
and smaller reductions in the unpenalized likelihood, which
presumably equates to less bias.

Discussion

Excessive sampling variation is the bane of multivari-
ate analyses. Penalized REML estimation can substantially
reduce this and yield values closer to the population param-
eters than unpenalized estimates. While reductions in loss
are generally highest for smaller samples, very worthwhile
improvements can be obtained for larger data sets, especially
as the number of traits of interest rises. This can impact dra-
matically on livestock improvement schemes, for instance, by

increasing the achieved response to index selection through
more appropriate index weights.

We have demonstrated that penalties on correlation ma-
trices based on assumptions for prior distributions proposed in
the Bayesian literature provide suitable functions. An advan-
tage of correlations (including partial auto-correlations) is that
they fall in a defined interval and that it is thus feasible to iden-
tify default values, e.g. for their variance, which can be used
to define relatively mild penalties — conceptually similar to the
use of weakly informative priors in Bayesian estimation (Gel-
man, 2006). This reduces the chance of over-penalizing whilst
achieving a large proportion of benefits. Furthermore, use
of such default values does not require laborious additional
computations, making routine use straightforward. Indeed,
mildly penalized likelihood functions often tend to have better
defined maxima which may aid convergence in iterative solu-
tion schemes. Although direct estimation of the parameters
defining strength of penalization is possible in principle, at-
tempts to do so (not shown) at best generally did not proof to
be sufficiently advantageous to justify the effort.

As emphasized, efficacy of penalized estimation de-
pends on how well the underlying priors agree with true val-
ues. Even when conformity was relatively poor, improvements
were obtained in almost all cases for mild penalties, especially
for matrices with small eigenvalues. While this may not hold
universally, it is a good indication that the method proposed
is beneficial for a wide range of scenarios commonly encoun-
tered in quantitative genetics.

Conclusions

Penalized REML estimation can dramatically improve
estimates of genetic parameters at little ‘cost’. Penalties on
correlations offer a framework which allows default settings
to be specified. We envisage this procedure becoming a future
standard for multivariate analyses.
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