
Proceedings, 10th World Congress of Genetics Applied to Livestock Production 
 

Efficiency of Variable Selection in Genome-Wide Prediction for Traits of Different Genetic Architecture 
 

C.C. Schön1 , V. Wimmer1,2 and C. Lehermeier1 
1Technische Universität München, 2current address: KWS SAAT AG 

ABSTRACT: The choice of statistical method to 
obtain maximum prediction accuracy in genome-
based prediction is still under debate. For traits 
influenced by a small number of quantitative trait loci, 
predictions should benefit from methods performing 
variable selection compared to methods distributing 
effects across the genome. However, assumptions 
underlying successful variable selection are frequently 
violated in experimental data. Based on computer 
simulations and experimental data sets from different 
species we investigated the breakdown behavior of 
different statistical methods with respect to recovering 
true non-zero predictors in the underlying genetic 
model. The efficiency of variable selection was 
strongly influenced by the level of determinedness of 
the data, the heritability of the trait, and the extent of 
linkage disequilibrium in the population. Based on our 
results, upper bounds for the number of causal 
mutations which can be identified by a variable 
selection method can be inferred. 
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Motivation 

A model predicting complex phenotypes is 
assumed to perform well, if prior assumptions about 
the factors contributing to phenotypic trait expression 
match the pattern in the data. However, the true 
genetic architecture of quantitative traits is unknown, 
making model selection a complex task in practice. 
Therefore, key questions in genomic prediction are 
whether or not selection of a subset of markers that 
tag quantitative trait loci (QTL) can enhance 
prediction performance and which methods should be 
chosen to perform this task. 

In simulation studies, it was shown that 
statistical methods employing variable selection such 
as BayesB (Meuwissen et al. 2001) or LASSO 
(Tibshirani et al. 1996) were superior over ridge 
regression best linear unbiased prediction (RR-BLUP; 
Hoerl and Kennard, 1970) or GBLUP (Habier et al. 
2007) even for traits of considerable complexity 
(Zhong et al. 2009; Daetwyler et al. 2010). However, 
most experimental studies conducted on livestock and 
plant populations revealed only small differences 
between methods employing variable selection and 

those distributing effects across the genome (e.g. 
Heslot et al. 2012). Only few examples exist where 
variable selection consistently improved prediction 
accuracy in real life data. Thus, the potential of 
variable selection in high-dimensional data sets still 
warrants further investigation. 

Here, we report results from several studies. 
Wimmer et al. (2013) investigated the performance of 
different prediction methods in simulated data and 
inferred the breakdown behavior of these methods 
with respect to recovering true non-zero predictors in 
the underlying genetic model. They also investigated 
the prediction performance of variable selection 
methods for traits of different genetic architecture and 
heritability in experimental data sets from different 
species. With experimental studies in maize we 
addressed the question if variable selection methods 
can outperform GBLUP in data sets with large allelic 
diversity as hypothesized by Lorenz et al. (2011). 
Furthermore, we investigated the predictive power of 
SNP markers that had been selected based on genome 
annotation and on their assignment to one of the two 
subgenomes of maize (Schnable et al. 2011).  

 
Computer Simulations 

A simulation study investigating the assumptions 
underlying successful variable selection was presented 
by Wimmer et al. (2013). Replicated data sets were 
generated for each of 400 scenarios. In each scenario, 
p=2000 independent biallelic single nucleotide 
polymorphism (SNP) markers segregating for n 
individuals were simulated. Varying the number of 
phenotypic observations from 100 to 2000 resulted in 
20 different levels of determinedness (n/p). The level 
of model complexity (number of true non-zero 
coefficients p0/n) was varied from 0.05 to 1.0 in 
increments of 0.05. For all scenarios linkage 
equilibrium was assumed and four different trait 
heritabilities (0.25, 0.50, 0.75, 1.0) were simulated. 
Performance of two methods employing variable 
selection (LASSO and BayesB) was compared to the 
performance of RR-BLUP by assessing the 
normalized L2 error  
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with 0β denoting the true, β̂  the estimated marker 

effects, and 
2
⋅  the L2 norm of a vector.  

The magnitude of the L2 error for RR-BLUP 
was mainly a function of the level of determinedness, 
while performance of LASSO and BayesB was also 
strongly affected by model complexity. For smaller 
population sizes, i.e. lower levels of determinedness 
(n/p < 0.5, h2=0.75), the variable selection methods 
performed better than RR-BLUP if model complexity 
was also low (p0/n < 0.4, h2=0.75). Thus, if the true 
model is sparse, variable selection methods can 
estimate marker effects with higher precision than 
RR-BLUP. However, as the genetic trait architecture 
becomes more complex, variable selection methods 
will not be successful in identifying the true model 
and precision of marker estimates will be low.  

When increasing the number of predictors in 
the model for a given sample size, the level of 
determinedness will decrease leading to an increase in 
L2 error. Consequently, increasing marker density with 
high-density SNP arrays or whole-genome sequencing 
will not improve prediction accuracy unless effective 
sample sizes increase accordingly. 

Trait heritability also had a strong effect on 
the breakdown behavior of LASSO and BayesB. For 
the 0.5 level of determinedness (n=1000, p=2000) and 
h2=1.0, variable selection methods performed better 
than RR-BLUP up to a complexity level of 
approximately 600 true non-zero effects. However, 
with h2<0.5 the ability to identify the true non-zero 
predictors in the model disappeared already for much 
lower complexity levels and variable selection 
methods could not improve prediction over RR-BLUP 
when the number of true non-zero effects exceeded 
300. As in simulation studies a number of simplifying 
assumptions have to be made (e.g. absence of 
dominance and epistasis, linkage equilibrium between 
markers) these numbers can be considered to be rather 
optimistic. Thus, we conclude that when trait 
heritability is low variable selection methods cannot 
be expected to recover the true model and show 
superior performance to RR-BLUP unless sample size 
is much higher than the number of segregating QTL.  

 
Experimental Studies 

We investigated prediction performance of the 
statistical methods LASSO, BayesB, and RR-BLUP 

for 13 traits of different genetic architecture in four 
experimental data sets from wheat, rice, Arabidopsis, 
and maize. One aim of the study was to identify 
experimental settings in which variable selection 
methods were consistently superior to RR-BLUP. 
Results are in part presented in Wimmer et al. (2013). 

The wheat (n=254, number of SNP markers 
m=2,056) and the maize data sets (n=698, m=11,646) 
represent typical breeding populations with familial 
substructure (Poland et al. 2012; Lehermeier et al. 
2013). The rice data set (n=413, m=36,901) comprises 
a global collection of highly diverse rice lines derived 
from six distinct subpopulations of different 
geographic origin generating high long-range linkage 
disequilibrium (LD) when calculated for the entire 
population (Zhao et al. 2011). The Arabidopsis data 
set consists of 199 accessions genotyped with 215,908 
SNP markers (Atwell et al. 2010) with no obvious 
population structure and substantially less LD than the 
other data sets. Phenotypic traits were selected based 
on results from genome-wide association studies 
indicating different genetic trait architectures. Of the 
13 traits analyzed, three were assumed to be 
controlled by few major QTL. Performance of the 
three statistical methods was assessed using fivefold 
cross-validation with random assignment of genotypes 
to estimation and test sets and repeated sampling.  

For all traits and all data sets, BayesB had the 
same prediction performance as RR-BLUP. In the 
Arabidopsis data set, LASSO was superior to RR-
BLUP and BayesB for two traits, with the largest 
difference exhibited for the trait that was assumed to 
have a sparse genetic architecture (FRIGIDA gene 
expression).  

In the wheat and rice data set prediction with 
LASSO never outperformed the other two methods 
and was significantly decreased for most traits. The 
results indicated that the decrease in predictive power 
of LASSO for all traits, irrespective of their genetic 
architecture, was the result of high long-range LD 
prevalent in the rice and wheat data sets. In the 
presence of LD, a loss in prediction performance can 
be expected for LASSO in comparison to RR-BLUP 
as LASSO randomly selects one predictor variable 
from a group of correlated variables while RR-BLUP 
distributes effects across several SNPs. 

These findings were corroborated by 
simulation studies. Imposing the correlation structure 
of the three experimental data sets on the simulated 
data described in the previous section showed an 
increase in normalized L2 error in the presence of LD 
as compared to simulations with independent SNP 
markers. Simulations showed that for LASSO the 
number of phenotypic observations required to 



achieve the same average normalized L2 error as in 
scenarios with independent markers was at least 
doubled when the LD structure of the Arabidopsis 
data set was superimposed.  

In the literature it has been hypothesized that 
Bayesian and variable selection models rely more on 
information from LD whereas GBLUP mainly uses 
information from relatedness (Habier et al. 2007). 
Consequently, we studied if variable selection 
methods could improve prediction performance when 
employed in experimental populations with distinct 
familial substructure and extensive allelic diversity. 
We investigated this question in a maize data set 
(n=841, m=32,801) comprising ten biparental families 
representing a large spectrum of the allelic diversity of 
European dent maize germplasm (Bauer et al. 2013; 
Lehermeier et al. in review). Five traits were recorded: 
biomass yield, dry matter content, male and female 
flowering, and plant height. From QTL analyses prior 
knowledge was available that large effect QTL were 
segregating for all traits in this population. We chose 
BayesCπ (Habier et al. 2011) as variable selection 
method and compared its prediction performance to 
GBLUP using cross-validation. Prediction 
performance across families was assessed by 
predicting phenotypic values of all individuals from 
one biparental family based on a model trained on 
genotypic and phenotypic data from the other nine 
families. 

Prediction performance achieved with 
BayesCπ was not improved compared to GBLUP 
despite the diverse material under study and QTL with 
sizeable effects segregating. Within and across 
families predictive abilities differed only marginally 
between the two methods giving no indication that the 
variable selection method could increase prediction by 
capturing LD between SNP markers and QTL. 

 
Towards whole-genome sequences 

The promise of whole-genome sequencing 
data is that causal variants will be included in the data 
with high probability (Meuwissen and Goddard 2010). 
On the other hand, the number of predictor variables 
is vast relative to the number of individuals for which 
sequencing and phenotyping data will be available. 
Even if sequencing technologies will allow the 
analysis of thousands of individuals in the near future, 
for many plant and livestock species precision 
phenotyping will remain a severe bottleneck leading 
to highly underdetermined models.  

As we have seen that the performance of 
prediction methods is mainly dominated by 
dimensionality (n, p, p0), pre-screening of sequencing 
data to extract meaningful predictors might be a viable 

strategy. It has been shown that integrating knowledge 
on marker-trait associations from functional or QTL 
detection studies into whole genome-based prediction 
can lead to an increase in prediction performance (de 
los Campos et al. 2013; Zhang et al. 2014). In a maize 
genome-wide association study Li et al. (2012) 
demonstrated that trait-marker associations were 
enriched in specific genomic regions. We therefore 
studied if prediction accuracies could be improved by 
classifying SNPs according to bioinformatic 
information. In the Arabidopsis and the maize data set 
described by Lehermeier et al. (2013) we used 
Software SnpEff (Cingolani et al. 2012) in 
conjunction with the respective gene models to 
classify SNPs into different bioinformatic categories 
(e.g. genic, non-genic, synonymous, non-
synonymous). For each class of SNPs, prediction 
performance was assessed using cross-validation and 
compared to the prediction performance that could be 
obtained with the same number of randomly chosen 
SNPs.  

For all traits in both data sets, predictive 
abilities obtained with SNPs in a specific genomic 
region were in the range of predictive abilities 
expected when the same number of SNPs was selected 
at random from the entire genome. Slightly different 
results were obtained by Morota et al. (2014) for 
prediction of three complex traits in chicken. They 
found small but significant differences in prediction 
accuracy for some genomic regions although these 
results were not consistent across traits and none of 
the predictions based on SNPs in a specific genomic 
region substantially outperformed prediction with all 
markers.  
 When incorporating recent findings on 
genome evolution of maize in our prediction models, 
we did find substantial differences in predictive 
abilities between genomic regions. It is conjectured 
that the ten maize chromosomes trace back to a 
tetraploid ancestor and Schnable et al. (2011) 
separated the genome of modern maize into two 
subgenomes representing the two duplicated genomes 
present in its tetraploid ancestor. Based on the maize 
data set described by Bauer et al. (2013) we assessed 
predictive abilities for five traits separately for the two 
subgenomes using GBLUP. Approximately two thirds 
of segregating SNPs were assigned to subgenome 1, 
one third to subgenome 2. Differences in size between 
the two subgenomes were accounted for by randomly 
sampling fragments from subgenome 1 to achieve the 
same genome coverage as subgenome 2. For all traits, 
a higher predictive ability was achieved for genomic 
regions assigned to subgenome 1 as compared to 
subgenome 2 indicating that in the maize genome 
specific regions exhibit higher predictive ability than 



others. Further research will be needed to investigate 
the underlying mechanisms of these findings.  

 
Conclusion 

Our findings from computer simulations and 
experimental data clearly show that variable selection 
methods can outperform methods retaining all 
predictors in the model. Crucial assumptions for 
variable selection to perform successfully are that in 
model training the effective sample size needs to scale 
with the number of causal mutations affecting the trait 
of interest and the total number of predictors in the 
model. High trait heritability and low LD increase the 
ability of the statistical methods to successfully 
perform variable selection and accurately estimate 
SNP effects. More profound knowledge on the role of 
specific genomic regions contributing to trait 
expression might enhance predictive power.    
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