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ABSTRACT: Bayesian models are described that use 
latent variables to model covariances. These models are 
flexible, scale up linearly in the number of traits, and allow 
separating covariance structures in different components at 
the trait level and at the genomic level. Multi-trait version 
of the BayesA (MT-BA) and Bayesian LASSO (MT-BL) 
are described that model heterogeneous variance and 
covariance over the genome, and a model that directly 
models multiple genomic breeding values (MT-MG), 
representing different genomic covariance structures. The 
models are demonstrated on a mouse data set to model the 
genomic covariances between body weight, feed intake and 
feed efficiency.  
Keywords: genomic variance; genomic correlation; latent 
variables; Bayesian 
 

Introduction 
Multi-trait models are essential tools for the 

animal breeder. The classical pedigree-based multi-trait 
model separates phenotypic covariances in genetic and 
environmental covariances, and this is crucial information 
to predict correlated selection responses and to optimally 
weigh traits in a selection index. The genomic era holds the 
promise to further disentangle genetic (or then: genomic) 
correlations by identifying groups of SNPs that create 
different correlation patterns. The holy grail in genomic 
breeding would be to construct genomic predictors with 
correlated responses that deviate from the overall genetic 
correlation structure. This, however, needs sophisticated 
models that allow for variable variance/covariance 
structures in SNP effects, or that group SNPs according to 
different genomic covariance patterns. These will most 
likely be Bayesian models. 

Multi-trait models have been considered in various 
QTL mapping (e.g., Lund et al. 2003, Meuwissen and 
Goddard, 2004) and association mapping (Ferreira and 
Purcell, 2009) applications, but limited work has been done 
to develop multi-trait whole-genome mapping and 
prediction models. Calus and Veerkamp (2011) developed a 
multi-trait variable selection model, but with constant 
covariance for SNP effects; other multi-trait genomic 
models are based on GBLUP, which has implicit 
assumptions of equal variance and covariance contributed 
by every SNP. Hence, limited, if any, work has been done 
to develop genomic models that infer different covariance 
patterns over the genome or that group SNPs according to 
different covariance patterns. 

Here, Bayesian multi-trait models are described 
that use latent variables and hierarchical models to flexibly 
model and disentangle covariances. To my knowledge, 
these particular Bayesian latent variable models have not 
been considered before, although recursive models (Varona 
et al., 2007) and state-space models (Piepho and Ogutu, 

2007; Forni et al., 2009) are in a similar spirit. Notably, 
state-space models use the same idea to introduce latent 
variables (‘random effects’) to model spatial or longitudinal 
covariance structures. Bayesian models that use latent 
variables to model covariance structures between traits, 
however, have not yet been described.  

The aim of this study is to, firstly, present the 
general ideas of modeling covariances between traits using 
latent variables. Subsequently, genomic models are 
described that model heterogeneous covariance. Multi-trait 
versions of the BayesA and the Bayesian LASSO model are 
described, and a model that directly estimates genomic 
values that represent different covariance structures. Earlier 
versions of the models described here were used in 
Sørensen et al. (2012) and Krag et al. (2013) to estimate 
genomic correlations using bivariate models. Bouwman et 
al. (2014) used a 14-trait Bayesian polygenic model based 
on the same latent variable technique. However, this earlier 
work used Gaussian distributions in the latent variables, 
making them close to frequentist multivariate models. Here 
the latent variable models are extended to use 
heterogeneous and sparse latent variables, allowing to 
model heterogeneous covariances over the genome and to 
disentangle pleiotropy.  

 
Materials and Methods 

Modeling covariance using latent variables. 
Consider the model for three traits 𝑦1, 𝑦2, 𝑦3: 
 𝑦1 = 𝑋1𝑏1 + 𝑟1𝑠 + 𝑒1 
 𝑦2 = 𝑋2𝑏2 + 𝑟2𝑠 + 𝑒2 (1) 
 𝑦3 = 𝑋3𝑏3 + 𝑟3𝑠 + 𝑒3 
with common ingredients 𝑋𝑖𝑏𝑖  to model “fixed effects” 
using 𝑏𝑖~uniform, and 𝑒𝑖 are residuals, with 𝑒𝑖~𝑁(0, 𝐼𝜎𝑖2). 
The uncommon ingredients are the terms 𝑟𝑖𝑠, where both 𝑟𝑖 
and s are model parameters, with 𝑟𝑖 scalar and s a vector of 
the length of the 𝑦𝑖  (an extension allowing for different 
lengths of 𝑦𝑖  and missing data follows). The vector s is 
referred to here as latent variable (or latent vector), and also 
can be thought of as a vector of random effects. It is crucial 
to note that there is only one s vector, which is implied in 
the model for all three traits. The purpose of the latent 
vector s is to model covariances between the traits, and the 
‘regression coefficients’ 𝑟𝑖  determine the sizes of these 
covariances. Because the latent vector s models the 
covariances, the model residuals are taken as uncorrelated 
between traits, and 𝜎𝑖2 can be interpreted as the remaining 
variance in trait i not correlated to the other traits. The 
distributional assumptions for 𝑟𝑖  and s are 𝑟𝑖~uniform and 
𝑠~𝑁(0, 𝐼) . The modeled variances and covariance are 
worked out as var( 𝑦𝑖) =var( 𝑟𝑖𝑠 + 𝑒𝑖) = 𝑟𝑖2 + 𝜎𝑖2 , and 



cov( 𝑦𝑖, 𝑦𝑗) =cov( 𝑟𝑖𝑠 + 𝑒𝑖,  𝑟𝑗𝑠 + 𝑒𝑗 )= 𝑟𝑖𝑟𝑗 .  This can be 
collected as: 

𝑣𝑎𝑟 �
𝑦1
𝑦2
𝑦3
� = �

𝑟12 𝑟1𝑟2 𝑟1𝑟3
𝑟1𝑟2 𝑟22 𝑟2𝑟3
𝑟1𝑟3 𝑟2𝑟3 𝑟32

� + �
𝜎12 0 0
0 𝜎22 0
0 0 𝜎32

� (2) 

The covariance structure that is modeled by the 𝑟𝑖 
parameters has the same form as the elements of a spectral 
decomposition and is also used in factor analytic models. 

The model (1) lends itself well for a Bayesian 
MCMC-based implementation. The inclusion of the latent 
variable factorizes the likelihood, which allows updating 
location parameters within each trait without the need to 
consider correlations across traits. The conditional posterior 
distributions for 𝑏𝑖, 𝑟𝑖  and s all break down to univariate 
Gaussian distributions.  

Missing data in the traits can be accommodated by 
introducing additional design matrices, extending the model 
(1) for trait i to: 
 𝑦𝑖 = 𝑋𝑖𝑏𝑖 + 𝑟𝑖𝑍𝑖𝑠 + 𝑒𝑖 (3) 
where now s will have a row for every record that has at 
least one of the traits observed, and 𝑍𝑖 will match s to the 
observed data in 𝑦𝑖 . In this approach, there is no need to 
estimate (impute) missing data, which is required when 
parameterizing in variance-covariance matrices and 
sampling variance-covariance matrices from inverse 
Wishart distributions, e.g. as in Wang et al. (1994). 

Covariance between random effects: MT-
rrBLUP model. Covariance between random effects can be 
modeled by introducing latent variables in the expectation 
of the random effect, or by writing a hierarchical model. 
This can be used to develop a multi-trait rrBLUP (MT-
rrBLUP, ridge regression or random regression BLUP) 
model. Because the single trait rrBLUP model has constant 
variance for all SNPs, the logical assumption in the MT-
rrBLUP model is to also assume constant covariance for all 
SNPs. This is analogous to the assumptions that are implicit 
in single trait and multi-trait GBLUP models. The MT-
rrBLUP model is specified by extending (3) with SNP 
effects: 
 𝑦𝑖 = 𝑋𝑖𝑏𝑖 + 𝑟𝑖𝑍𝑖𝑠 + 𝑊𝑎𝑖 + 𝑒𝑖 (4) 
where W is a matrix with SNP covariates (centered and 
possibly scaled), and 𝑎𝑖  are SNP effects for trait i. SNP 
effects across traits are correlated by writing hierarchical 
models for the SNP effects: 
 𝑎𝑖 = 𝑣𝑖𝑢 + 𝑎𝑖∗ (5) 
 𝑎𝑖∗~𝑁(0, 𝐼𝜎𝑎𝑖2 ), 𝑢~𝑁(0, 𝐼) 
where now u is a latent variable that models the covariance 
between SNP effects across traits. Similar to the models at 
the trait level (1), (5) has ‘residual SNP effects’ 𝑎𝑖∗ that are 
taken as uncorrelated across traits. Analogous to (2) it can 
be worked out that this model models 𝑣𝑖2 + 𝜎𝑎𝑖2  variance for 
the SNP effects for trait i, and 𝑣𝑖𝑣𝑗 covariance between the 
SNP effects for trait i and j. Bivariate versions of this model 
were used in Sørensen et al (2012) and Krag et al (2013) to 
estimate genomic correlations.  

Heterogeneous genomic covariance models: 
MT-BA and MT-BL. Heterogeneous variance-covariance 
models for SNP effects are developed by considering 

heterogeneous variance in the latent variable u, and 
optionally also in the ‘residual SNP effects’ 𝑎𝑖∗  from (5). 
Here the approach known from the BayesA (Meuwissen et 
al., 2001) and Bayesian LASSO (Park and Casella, 2008) 
models is used by introducing a SNP-specific variance for 
every level in u. This develops the multi-trait BayesA (MT-
BA) and multi-trait Bayesian LASSO (MT-BL) model by 
modifying (5) to: 
 𝑢𝑖~𝑁(0, 𝜏𝑖2) 
 𝜏𝑖2~𝜒−2(𝑠𝑐𝑖, 𝑑𝑓𝑖) MT-BA (6) 
or 𝜏𝑖2~𝐸𝑥𝑝(𝜆) MT-BL (7) 
The BayesA and Bayesian LASSO only differ in the 
assumed distribution for these SNP-specific variances: in 
(6) a scaled-inverse chi-square with scale 𝑠𝑐𝑖 and degrees of 
freedom 𝑑𝑓𝑖 is used, and in (7) an exponential distribution 
with rate 𝜆. Because the variance explained by the latent 
variable is already modeled by the regression parameters 𝑣𝑖 
in (5), scale in (6) and rate in (7) can be taken known and 
are set to 1. The degrees of freedom parameter in (6) can be 
set to control the spread of the individual SNP variance 
around the common scale, and here a value of 5 was used. 

Directly modeling multiple genomic values 
explaining different covariance structures: MT-MG 
model. An alternative approach, compared to the previous 
models, is to use latent variables in the trait models that 
represent genomic values, and in a hierarchical model 
match SNP effects to each of these genomic values. By 
constraining the signs of the regression parameters on these 
genomic values, each genomic value can be forced to 
explain a particular covariance pattern, and the model will 
map the SNPs that can be associated with that covariance 
pattern. For 3 traits 𝑦1, 𝑦2, 𝑦3 , and 2 vectors of genomic 
values 𝑔1, 𝑔2, this is the model: 
 𝑦1 = 𝑋1𝑏1 + 𝑣11𝑍1𝑔1 + 𝑣21𝑍1𝑔2 + 𝑟1𝑍1𝑠 + 𝑒1 
 𝑦2 = 𝑋2𝑏2 + 𝑣12𝑍2𝑔1 + 𝑣22𝑍2𝑔2 + 𝑟2𝑍2𝑠 + 𝑒2 (8) 
 𝑦3 = 𝑋3𝑏3 + 𝑣13𝑍3𝑔1 + 𝑣23𝑍3𝑔2 + 𝑟3𝑍3𝑠 + 𝑒3 
The terms 𝑋𝑖, 𝑏𝑖, 𝑟𝑖 , 𝑠, 𝑒𝑖 are the same as in (1) and (3), and 
the 𝑟𝑖𝑍𝑖𝑠  terms are included to model environmental 
covariances, allowing for missing data in the traits. Also the 
match of genomic values to records accounts for missing 
data in the traits by inserting the same 𝑍𝑖  design matrices 
introduced in (3). The vectors of genomic values have 
hierarchical models using all SNPs in each: 
 𝑔1 = 𝑊𝑎1 + 𝑔1∗ (9) 
 𝑔2 = 𝑊𝑎2 + 𝑔2∗ 
where 𝑊𝑎𝑖 are again genotype covariates and SNP effects 
as in (4), except here 𝑎𝑖 represents SNP effects for genomic 
vector 𝑔𝑖 , and not for a particular trait. Indirectly, these 
SNP effects relate to traits, depending on the regression 
parameters 𝑣𝑖𝑗  in (8). The signs of the regression 
parameters 𝑣𝑖𝑗  are constraint to force 𝑔1 and 𝑔2  to explain 
different covariance patterns across traits. In the sequel, 
where such a 3-trait model with 2 genomic values is used, 
the constraints were 𝑣11 > 0, 𝑣12 > 0 so that 𝑔1 explains a 
positive covariance between trait 1 and 2, and 𝑣21 >
0, 𝑣22 < 0  so that 𝑔2  explains a negative covariance 
between trait 1 and 2. In this particular application, 𝑣13, 𝑣23 
were unconstraint, but in principle more vectors of genomic 
values can be added in order to also model different 
covariance patterns with trait 3. 



In (8) the ‘residual genomic values’ 𝑔𝑖∗  are 
confounded with the latent variable s that models residual 
covariance, and therefore var(𝑔𝑖∗) was constraint to a small 
value. In this model it is convenient to scale the traits to 
have variance 1, and var(𝑔𝑖∗ ) was set to 1/100. Some 
minimum variance is needed in these residual terms for the 
MCMC machinery to work. Further in (8) it is attractive to 
choose a sparse shrinkage or mixture distribution on the 
SNP effects 𝑎𝑖 so that the model can map different sets of 
SNPs in each of the genomic vectors. As in (6-7) there is no 
need to model SNP variances at this level, and a Bayesian 
LASSO or Power LASSO with known rate can be chosen, 
or a mixture model with known proportions and variances. 
In the following application, a Bayesian Power LASSO 
(Gao et al., 2013) was chosen with rate parameter 1 and 
power parameter 0.5. 

Estimating total explained genomic variance 
and covariance. To compute genomic explained variance 
for trait i, var(𝑊𝑎𝑖) from (4) is evaluated at every MCMC 
cycle and the estimate of the posterior mean of genomic 
variance is the mean of these var(𝑊𝑎𝑖 ) values. This is a 
generic way of evaluating genomic variance that can be 
used irrespective of the distributional assumptions used for 
the SNP effects. Because 𝑊𝑎𝑖  represents genomic values 
(SNPs times SNP effects), this approach effectively 
computes the genomic values per MCMC cycle, and 
evaluates the genomic variance as the variance of genomic 
values, all per MCMC cycle. In an analogous fashion, the 
genomic variance in the MT-MG model is evaluates as 
var(𝑣1𝑖𝑍𝑖𝑔1 + 𝑣2𝑖𝑍𝑖𝑔2), or as var(𝑣1𝑖𝑍𝑖𝑔1) + var(𝑣2𝑖𝑍𝑖𝑔2) + 
2cov(𝑣1𝑖𝑍𝑖𝑔1, 𝑣2𝑖𝑍𝑖𝑔2).  

Data. The described multitait models are 
demonstrated on a data set that was previously described 
and analysed using univariate models by Ehsani et al. 
(2012). The data consists of a mouse F2 cross from inbred 
lines that were extreme in body weight and fatness. The 
traits analysed were Body Weight (BW), Feed Intake (FI) 
and Feed Efficincy (FE). Ehsani et al. (2012) showed that 
this mouse cross segregates for some large QTL affecting 
BW on chromosomes 1,2,9,10,11, affecting FI on 
chromosomes 2,7, and affecting FE on chromosomes 
6,11,12. In contrast to the analyses by Ehsani et al. (2012) 
here more data was used: Ehsani et al. made a subset of 440 
animals which also had gene expression data; in the current 
analysis no gene expression data was considered and a 
larger data set with 1163 BW records and 748 FI and FE 
records was used. The marker data used were 1806 biallelic 
SNPs. 

 
Results 

Genomic variances and correlations. Table 1 
presents estimates for genomic heritabilities (genomic 
explained variance as proportion of the total variance) and 
genomic correlations for the traits Body Weight (BW), 
Feed Intake (FI) and Feed Efficiency (FE) using the 
presented genomic models. The multi-trait versions of the 
BayesA (MT-BA) and Bayesian LASSO (MT-BL) model 
produce nearly identical estimates than the rrBLUP model; 
the latter is equivalent to a GBLUP model to estimate 
genomic explained variance (Yang et al., 2010). The MT-

MG model captures less of the genomic variance and 
correlation. 
 
Table 1. Genomic heritabilities (h2) and correlations 
(rG) for Body Weight (BW), Feed Intake (FI) and Feed 
Efficiency (FE) in diferent genomic models. 

 
rr BLUP MT- 

BA 
MT- 

BL 
MT-
MG 

h2 BW 0.37 0.37 0.37 0.25 
h2 FI 0.30 0.31 0.31 0.14 

h2 FE 0.32 0.33 0.33 0.24 
rG BW-FI 0.82 0.81 0.82 0.65 

rG BW-FE  0.63  0.62  0.63 0.49 
 
Genomic covariance profiles from rrBLUP, 

MT-BA and MT-BL models. Figure 1 present genomic 
correlations estimated in 5-marker windows for the 
genomic correlation between Body Weight and Feed Intake 
obtained from the MT-BA model. The overall genomic 
correlation between these traits was 0.81, but locally in the 
genome this correlation varies from about 0.3 to 0.9. The 
result from the MT-BL model was very similar, while the 
result from the MT-rrBLUP showed a smaller spread in the 
local genomic correlations of about 0.5 to 0.9.  

 
Figure 1. Genomic correlations between Body Weight 
and Feed Intake over the genome by marker (SNP 
number), obtained from the MT-BA model, smoothed in 
5-marker windows and colored by chromosome. 

 
De-constructing genomic covariance using the 

MT-MG model. Although the MT-MG model covered less 
of the genomic variance and covariance (Table 1), this 
model was able to construct two genomic breeding values 
showing different covariances with the traits. The 
correlations of these two genomic breeding values is 
graphically presented in Figure 2: the 𝑔1  correlates 
positively to BW and FI (0.34 and 0.40, respectively), while 
𝑔2  correlates positively to BW but has approx. zero 
(slightly positive) correlation with FI (0.34 and 0.08, 
respectively). The correlations of these genomic values with 



FE were -0.07 and 0.49, respectively. Hence, 𝑔1  is the 
genomic value that predicts animals with higher body 
weight and higher feed intake (with equal or even slightly 
reduced efficiency), while 𝑔2  is the genomic value that 
predicts animals with higher body weight without higher 
feed intake, i.e., the more efficient ones. Figure 3 presents 
SNP effects mapped in each of these two genomic values, 
showing that SNPs are often only mapped in one of the two 
genomic values.  
 

  
Figure 2. Deconstructed genomic values from the MT-
MG model (vertical axes), left the 𝒈𝟏 and right the 𝒈𝟐 
genomic value, versus the standardized phenotypes for 
Body Weight (blue) and Feed Intake (green) on the 
horizontal axes.  

 
Figure 3. SNP effects mapped to the deconstructed 
genomic values from the MT-MG model: left graph 
inclusion probabilities for SNPs to map to 𝒈𝟏 towards 
the left, and to map to 𝒈𝟐 towards the right, colored by 
chromosome; right graph the same SNP inclusion 
probabilities plotted against each other. 

 
Discussion and Conclusion 

Further implementation of genomic selection in 
breeding programs will require extension of current 
univariate genomic evaluation models to multi-trait 
versions. A multi-trait version of the GBLUP model is in 
principle straightforward; this is the classical polygenic 
multi-trait model where the numerator relationship matrix 
A would be replaced by the genomic relationship matrix G. 
However, the commonly used G-matrices embed the 
implicit assumption of equal contribution of every SNP to 
the genomic variance. This is clear from deriving the 
GBLUP model from the rrBLUP model with constant 
variance for SNP effects (e.g., as in Yang et al., 2010). A 
multi-trait GBLUP model will embed the implicit 
assumption of equal contribution of every SNP to the 
covariance between traits. These GBLUP models may not 
be able to fully develop the potential of multi-trait genomic 
prediction. For many breeding applications it will be 

interesting to search for SNPs that show correlations 
between traits, which deviate from the overall correlation, 
or that show less strong correlation than the overall 
correlation. Models presented here allow identifying such 
SNPs. It is possible to extend the GBLUP models to use 
weighted G-matrices to use this information.  

The data used in this study was an F2 between 
inbred lines, which does not allow resolving genomic 
effects to a very detailed level. In other types of 
populations, with finer LD structure, it will be interesting to 
run the same models with larger SNP densities. This is 
computationally feasible, e.g. Krag et al. (2013) ran similar 
models using close to 600K SNPs. 

The Bayesian multi-trait models presented here are 
also in other settings quite competitive with REML 
approaches for estimating covariances. This was 
demonstrated by Bouwman et al. (2014) who used the same 
latent variable techniques to fit a 14-trait polygenic model.  
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