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ABSTRACT: Accurate prediction of disease risk is needed 
for implementing personalized medicine. Despite important 
advances in the assessment of genetic risk, our ability to 
predict disease risk based on information from the genome 
(e.g., SNPs) remains very limited. Owing to developments in 
high-throughput technologies integrated omic profiles are 
becoming increasingly available. These data holds 
information that can be extremely useful for the assessment 
of disease risk and progression. However, omic data is high 
dimensional and complex, and we lack a coherent framework 
for the integration of multi-layer omic data into risk 
assessment models. In this preceding, we discuss 
extensions of Whole-Genome Regressions that can be 
used to incorporate integrated omic profiles for the 
assessment of disease risk. Some of the models described 
are evaluated using whole-genome expression profiles for 
prediction of survival after diagnose of breast cancer. 
Keywords: prediction of complex traits; diseases risk; omics 
integration. 

INTRODUCTION 
Modern genotyping and sequencing technologies can 

deliver large volumes of data from multiple omic layers, 
including the genome (e.g., SNPs, CNV), epigenome (e.g., 
methylation) and transcriptome (RNA abundance). In recent 
years, several data sets comprising disease, clinical and omic 
information have been created and made publicly available 
through data repositories such as DataBases of Genotypes 
And Phenotypes (dbGaP) or the European Genome-
phenome Archive (EGA). These data hold extremely useful 
information that could be used for the development of risk-
assessment models. 

Since the completion of the human genome project in 
2003 (Lander et al., 2001; Venter et al., 2001; Anon, 2003), 
several Genome Wide Association Studies (GWAS) have 
been conducted; these studies have uncovered un-precedent 
numbers of variants associated with important human traits 
and diseases (e.g., www.genome.gov/gwastudies/). These 
findings have been used to develop risk scores based on 
either simple or weighted counts of risk-alleles at GWAS-
significant loci (e.g., Dominiczak and McBride, 2003; De 
Jager et al., 2009; Chen et al., 2011). Further, some studies 
considered statistical learning methods such as naïve Bayes 
classifier (Okser et al., 2010), support vector machines (Wei 
et al., 2009), random forest (Bureau et al., 2005), rule 
induction (Sebastiani and Perls, 2010), and Bayesian 
networks (Rodin and Boerwinkle, 2005). 

However, for most diseases, risk-scores based on 
GWAS-significant variants explain only a small fraction of 
the inter-individual differences in genetic risk; a problem 
referred to as the missing heritability of complex traits and 
diseases (Maher, 2008). The case of body mass index (BMI) 
illustrates the extent of the problem: despite of BMI being a 
highly heritable trait, ℎ2 ∈ [0.4,0.6], the 15 loci that have 

been consistently identified to be associated to BMI explain 
less than 2% of the observed variance on BMI (Loos, 2009).  

The “missing heritability” problem has been discussed in 
the literature in-extenso (Maher, 2008; Manolio et al., 2009), 
and there is a general consensus that an important 
explanation of the problem resides on the lack of power of 
standard GWAS: in the majority of these studies a large 
fraction of small-effect variants do not reach genome-wide 
significance and their effects remain un-accounted for.  

Recent studies have shown that predictive power of risk 
scores could be increased by considering, variants that have 
strong but not genome-wide significant association with the 
trait or disease of interest (Allen et al., 2010). When markers 
are pre-selected based on stringent p-value cut offs, the 
estimated proportion of variance explained reflects the 
predictive power of the selected set of markers. This under-
estimates the true proportion of variance that can be 
potentially explained using all the genomic information 
available (e.g., common SNPs).  

Yang et al., (2010) estimated the total proportion of 
variance that can be explained by common SNPs--hereinafter 
referred as to the ‘genomic heritability’--using a Whole-
Genome Regression (WGR) approach where phenotypes are 
regressed on all available SNPs concurrently. Using the G-
BLUP method (VanRaden, 2008; Yang et al., 2010), Yang et 
al. estimated that 50% of the heritability of human height 
could be explained. Similar results were obtained by others 
(Purcell et al., 2009; Speed et al., 2012).  

However, while able to account for a large proportion of 
the genetic variance, prediction accuracy depends also on 
other factors (Goddard and Hayes, 2007; de los Campos et 
al., 2012 b). Studies with animal (Goddard and Hayes, 2007; 
VanRaden, 2008; Vazquez et al., 2010), plant (Crossa et al., 
2010; Resende et al., 2012) and human data (Makowsky et 
al., 2011; de los Campos et al., 2012 a; Vazquez et al., 2012) 
have shown that WGR can achieve high predictive power 
when discovery and validation samples are closely related. 
However, the predictive ability of WGR can be greatly 
affected by the genetic distance (Habier et al., 2010; Pérez-
Cabal et al., 2012). Studies with WGR for prediction of 
phenotypes of distantly related individuals have shown poor 
predictive power (e.g., R2 in testing samples of the order of 
5% for human height, a trait with heritability of 0.8 and 
genomic heritability of 0.5; de los Campos et al., 2013b).  

Beyond the genome. The integration of multi-layer 
omic data into risk-assessment methods can be an avenue for 
advancing our ability to predict disease risk (Berghoff et al., 
2013). Chen and co-authors (2012) demonstrated how 
integrated omic profiles of a person could provide insights 
into the development of Type 2 diabetes.  

Multi-layer omic data is becoming increasingly 
available. Several GWAS have added information from 
layers other than the genome (e.g, epigenom, transcriptome). 
Recently, repositories have been created to deposit and share 
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standardized multi-layer omic data linked to clinical 
information e.g., The Cancer Genome Atlas, (TCGA) (Chin 
et al., 2011). 

Relative to genome-only data (e.g., SNPs) multi-layer 
omic data has several advantages. First, data from some omic 
layers (e.g., methylome, transcriptome, metabolome) can 
account for additive genetic factors and other factors, 
including non-heritable genetic ones (e.g., effects due to 
dominance or epistasis) and environmental factors. 
Accounting for non-heritable factors may not be critical for 
prediction of breeding values; however, exploiting such 
signals can have great impacts on the prediction accuracy of 
yet-to-be phenotypic and disease outcomes.  

Second, by being ‘biologically closer’ to the disease 
outcome the distribution of effects of some omic layers (e.g., 
mutations at the tumor cell) may have a distribution of effects 
easier to deal-with (e.g., large effect-risk-factors may explain 
a larger proportion of variance in disease risk). Examples of 
these are signatures for diagnostic of cancer provided by the 
expression of genes that are known to be differentially 
expressed in tumor cells (Paik et al., 2004). Third, although 
redundancies between layers are likely to exist, the 
information from different omic layers may be 
complementary. For instance, it has been established that 
SNPs account only for a fraction of variation of the human 
genome, and that non-negligible portion of genetic variation 
can be attributed to structural variations (Forer et al., 2010). 

The use of integrated omic profiles for prediction of 
disease risk is certainly attractive. However, integrating high 
dimensional data from multiple omic layers into prediction 
models poses important statistical and computational 
challenges. Additionally, the development of risk assessment 
methods lags behind (Palsson and Zengler, 2010). Most of 
the statistical methods and data analytic tools available focus 
in finding associations of disease outcomes with risk factors 
using a one-risk-factor-at-a-time approach. We argue that a 
perhaps more appropriate approach can be based on whole-
genome-multi-layer methods. Therefore, in this article we 
discuss some approaches for data integration based on 
extensions of WGRs to multi-layer omic settings. What 
remains of this article is organized as follows. In the next 
Section (2) we present a brief review of WGR methods and 
discuss extensions for multi-layer omic data. In Section (3) 
we present preliminary results obtained with the application 
of a whole-transcriptome model for prediction of breast 
cancer outcomes. Finally, we close our article by providing in 
Section (4) some concluding remarks.   

 
WHOLE-GENOME MODELS  

FOR MULTI-LAYER OMIC  DATA 
In this section we briefly review standard Bayesian 

WGR methods that are commonly use for prediction using 
data from the genome (e.g., SNPs), and discuss extensions of 
these models to accommodate multi-layer omic data.   
 The type of data we are considering consists of a 
phenotypic outcome 𝑦𝑖  (𝑖 = 1, … ,𝑛), e.g., concentration of 
plasma triglycerides, or a marker for a disease (e.g., levels of 
blood glucose indicating hyperglycemia), and a set of 
predictors, including: (a) non-genetic covariates, 𝑥𝑖𝑗  (𝑗 =
1, … , 𝑝𝐹), and covariates from two or more omic layers. 

Considering two omic layers suffices to introduce our 
models. We denote them, 𝑊 = �𝑤𝑖𝑗�𝑗=1

𝑗=𝑝𝑤 
 and 𝑍 =

�𝑧𝑖𝑗�𝑗=1
𝑗=𝑝𝑧 .  For instance, 𝑤𝑖𝑗 ∈ {0,1,2} may represent the 

genotype of the ith individual at the jth  SNP, and 𝑧𝑖𝑗  may be 
the measure of gene expression at the jth gene on the ith 
individual. The phenotypic outcome may be quantitative or 
categorical. For ease of presentation we describe our models 
for a quantitative trait; the modifications needed to handle 
binary and censored outcomes would be extended as 
described elsewhere (Gianola and Foulley, 1983; de los 
Campos et al., 2012 a).  

 

Baseline Model 
The baseline model include the fixed effects of non-

genetic risk covariates (e.g., sex, treatment) and a WGR on 
SNPs (Meuwissen et al., 2001; see detailed review in de los 
Campos et al., 2013a), which takes the form: 

𝑦𝑖 = 𝜇 + ∑ 𝑥𝑖𝑗𝛽𝑗 + ∑ 𝑤𝑖𝑗𝛼𝑤𝑗
𝑗=𝑝𝑤
𝑗=1 + 𝜀𝑖

𝑗=𝑝𝐹
𝑗=1                 [1] 

     = 𝜂𝑖 + 𝜀𝑖  
where 𝜇 is an intercept, 𝛽𝑗 is the effect of the jth covariate, 
𝛼𝑤 = �𝛼𝑤𝑗�𝑗=1

𝑗=𝑝𝑤  are marker effects, 𝜀𝑖 are iid (independent 
and identically distributed) normal residuals with mean zero 
and variance 𝜎𝜀 

2 and 𝜂𝑖 is the linear predictor of the 
regression. The conditional distribution of the data given the 
parameters is 

𝑝(𝑦|𝛽,𝜎𝜀2) = ∏ 𝑁(𝑦𝑖|𝜂𝑖,𝜎𝜀2)𝑖=𝑛
𝑖=1          [2] 

where 𝑁(𝑦𝑖|𝜂𝑖 ,𝜎𝜀2) denotes a normal density with mean 𝜂𝑖 
and variance 𝜎𝜀2.  

Inferences are based on the posterior distribution of the 
parameters given the data, which is proportional to the 
likelihood [2], times the prior distribution. The intercept and 
the fixed effects {𝛽𝑗} are assigned un-informative (i.e., flat) 
priors. The residual variance is assumed to follow a scaled-
inverse chi-square density, 𝜒−2(𝜎𝜀2|𝑑𝑓𝜀, 𝑆𝜀) and marker 
effects are assigned iid informative priors, 𝛼𝑤𝑗~𝑖𝑖𝑑 
𝑝(𝛼𝑤𝑗|𝛺𝑤  ); therefore, in the baseline model the posterior 
density becomes, 
𝑝(𝜇,𝛽,𝜎𝜀2,𝛼𝑤|𝑦) ∝
∏ 𝑁(𝑦𝑖|𝜂𝑖 ,𝜎𝜀2)𝜒−2(𝜎𝜀2|𝑑𝑓𝜀 , 𝑆𝜀) �∏

 
𝑝(𝛼𝑤𝑗|𝛺𝑤  )𝑗=𝑝𝑤

𝑗=1 �𝑖=𝑛
𝑖=1     

 The choice of the prior distribution assigned to marker 
effects, 𝑝(𝛼𝑤𝑗|𝛺𝑤  ), and the values of the hyper-parameters, 
𝛺𝑤, will determine whether the model performs shrinkage of 
estimates of marker effects, variable selection or a 
combination of both. Commonly used priors include (i) the 
Gaussian prior which induces shrinkage that is either 
homogeneous across markers (if genotypes were 
standardized) or proportional to minor allele frequency (if the 
markers are not standardized). This prior is used to model 
genetic risk to highly complex traits  e.g., human height 
(Yang et al., 2010). (ii) Priors from the thick tailed family 
(e.g., the scaled-t or the double-exponential) have, relative to 
the Gaussian prior, higher mass at zero and thicker tails. 
These priors assume that most predictors (genetic risk factor) 
have very small effect and a few have large effects. These 
types of priors are used in models Bayes A (Meuwissen et al., 
2001) and the Bayesian Lasso (Park and Casella, 2008). We 
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may also encounter traits and diseases for which some 
genetic regions may not contribute to genetic risk at all. 
Accommodating these types of genetic architectures requires 
using (iii) finite-mixture priors that assign a non-null prior 
probability for the effects to be equal to zero. These priors 
induce variable selection and shrinkage simultaneously. To 
achieve this, the most common practice is to use two-
component mixture priors formed by combining a spike, that 
can be either a finite point of mass or a very sharp 
distribution centered at zero, and a relatively flat slab. The 
slab can be any density, two commonly used distributions for 
the slab are the Gaussian (Ishwaran and Rao, 2005) or a 
distribution from the thick-tailed family (Bayes B, 
Meuwissen et al., 2001).  

Each of the prior densities above-described has one or 
more hyper-parameters (𝛺.). These parameters (e.g. the 
variance of the normal density, or the scale and degrees of 
freedom of the scaled-t density, or the mixing proportions of 
a two-component mixture prior) control the extent of 
shrinkage and the propensity of the model to induce variable 
selection. These parameters can strongly influence 
inferences; therefore, the preferred approach consists of 
estimating these hyper-parameters from data (de los Campos 
et al., 2013 a; Gianola, 2013). In a fully Bayesian setting this 
is done by assigning a prior density to them. Considering 
this, the joint posterior of a model with fixed effects and one 
sets of random effects describing risk conferred by W 
becomes:  

𝑝(𝜇,𝛽,𝜎𝜀2,𝛼𝑤|𝑦) ∝ ∏ 𝑁(𝑦𝑖|𝜂𝑖 ,𝜎𝜀2) ×𝑖=𝑛
𝑖=1                     [3] 

𝜒−2(𝜎𝜀2|𝑑𝑓𝜀 ,𝑆𝜀)∏ 𝑝�𝛼𝑤𝑗|𝛺𝑤�
𝑗=𝑝𝑤
𝑗=1  𝑝(𝛺𝑤  )    

 

Additive Omic Model 
An extension of the model above-described can be 

obtained by expanding 𝜂𝑖 with addition of information from a 
second omic layer (Z) as follows,  

𝜂𝑖 = 𝜇 + ∑ 𝑥𝑖𝑗𝛽𝑗
𝑗=𝑝𝐹
𝑗=1 + ∑ 𝑤𝑖𝑗𝛼𝑤𝑗

𝑗=𝑝𝑤
𝑗=1 + ∑ 𝑧𝑖𝑗𝛼𝑧𝑗

𝑗=𝑝𝑧
𝑗=1 [4] 

above 𝛼𝑤 = �𝛼𝑤𝑗�𝑗=1
𝑗=𝑝𝑤  and 𝛼𝑧 = �𝛼𝑧𝑗�𝑗=1

𝑗=𝑝𝑧 represent 
regression coefficients representing the main effects of 
predictors in W and Z on the risk score. Each omic set may 
have a different prior assigned to 𝛼𝑤 and 𝛼𝑧 and also have 
separate hyper-parameters reflecting a different distribution 
of the effects of each omic set. Thus [3] would can expand as 
follows: 

𝑝(𝜇,𝛽,𝜎𝜀2,𝛼𝑤,𝛼𝑧 ,𝛺𝑤 ,𝛺𝑧|𝑦) ∝                                     [5] 
∏ 𝑁(𝑦𝑖|𝜂𝑖 ,𝜎𝜀2)𝜒−2(𝜎𝜀2|𝑑𝑓𝜀 , 𝑆𝜀) ×𝑖=𝑛
𝑖=1     

∏ 𝑝�𝛼𝑤𝑗|𝛺𝑤�
𝑗=𝑝𝑤
𝑗=1  𝑝(𝛺𝑤  )  ∏ 𝑝�𝛼𝑧𝑗|𝛺𝑧�

𝑗=𝑝𝑧
𝑗=1  𝑝(𝛺𝑧 )    

where 𝑝�𝛼.𝑗�𝛺. � denotes the prior density assigned to 𝛼.𝑗, 
and 𝑝(𝛺.) the prior distribution of the hyper-parameters. 
 

Accounting for Interactions 
The models described so far are additive, since the effect 

of any given predictor does not depend on other predictors. 
However, the effects of some predictors maybe modulated by 
other predictors. For instance, the effects of genes on gene 
expression and ultimately on phenotypes may be modulated 

by methylation. Different types of interactions that could 
extend the model in expressions [4] and [5], as follows:  

Case 1. A first type of interactions includes a major 
factor (e.g., treatment A or B) and high dimensional 
predictors (e.g., gene expression levels). For instance, the 
response to a cancer treatment may be modulated by gene 
expression profiles at the tumor cell. This interaction can be 
accommodated by adding to equation [4] a new set of 
random effects contrasts between the major factor and each 
of the small-risk factors. Thus, if the kth fixed effect, 𝑥𝑖𝑘, 
interacts with predictors in the set 𝑊, the set of contrasts will 
be 𝑊𝑥𝑘 = �𝑥𝑖𝑘 × 𝑤𝑖1, 𝑥𝑖𝑘 × 𝑤𝑖2 … , 𝑥𝑖𝑘 × 𝑤𝑖𝑝𝑤�. The new 
term will be 𝑥𝑖𝑘 × ∑ 𝑤𝑖𝑗𝛾𝑤𝑥𝑘𝑗  𝑗=𝑝𝑤

𝑗=1 and the prior density 
described in [5] will also include following term: 
∏ 𝑝(𝛾𝑤𝑥𝑘𝑗|𝛺𝑤𝑥𝑘  )𝑝(𝛺𝑤𝑥𝑘) 𝑗=𝑝𝑤
𝑗=1 .  

Case 2. A second case is the interaction between two 
high-dimensional sets. If the number of predictors in the set 
is 𝑝., the number of contrasts for all possible 1st order 
interactions is 𝑝. × (𝑝. − 1)/2. Adding in the models all these 
possible contrasts is unfeasible. Relevant interactions could 
be found with search algorithms. A review of existing 
methods for GWAS can be found in (Cordell, 2009). 
However, search algorithms may fail to encounter a 
reasonably good model in a set of models too large. For 
instance, stepwise methods have problems modeling response 
surfaces in high complexity models (Friedman and Stuetzle, 
1981). Alternatively, non-parametric models, such us neural 
networks and kernel methods (RKHS, e.g., Gianola et al., 
2006), capture departures from linearity. Empirical evidence 
have suggested that kernel methods, particularly kernel 
averaging, (de los Campos et al., 2010) can be very effective 
(Heslot et al., 2012). To extend models described in [4] and 
[5] incorporating high dimensional interactions could be 
achieved by adding a random effect with co-variance 
structure given by the kernel. The BGLR package (de los 
Campos and Perez, 2013) allows inclusion of both parametric 
and non-parametric components in the same model. 

Case 3, involves interactions between predictors in two 
high dimensional sets. For examples, we may want to model 
interactions between predictors in W and those in Z. Here we 
face the problem of the number of terms in two high 
dimensional input sets. For instance, we may want to model 
first order interactions between predictors the total number of 
contrasts needed, which is equal to the dimension of each of 
the sets (e.g., pW×pZ) can be extremely large. Again, here at 
least two strategies are possible, one is to search for 
interactions using model search algorithms, and the other is 
to accommodate departures from the additive model using 
semi-parametric methods such as RKHS. The kernel function 
in this case would depend on a weighted sum of the distance 
between individuals in set W and set Z; and the tuning of 
bandwidth parameters will need to be addressed.   

AN APPLICATION EXAMPLE 
In this section we present a simple example designed to 

assess the potential benefits of using a whole-genome 
approach in risk-assessment models for prediction of breast 
cancer (BC) outcomes. Advances in early detection and in 
adjuvant therapy have reduced mortality. However, adjuvant 
therapy has important undesirable side effects on treated 
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patients, including permanent infertility, heart damage, 
cognitive impairment, and increased probability of 
developing other types of cancers (Eifel et al., 2001). There is 
a great deal of variability in the aggressiveness of BC tumors, 
and it has been estimated that in 60% of patients BC will not 
recur (Weigelt et al., 2005). However, due to lack of models 
that can accurately predict BC progression, approximately 
80% of BC patients are treated with adjuvant therapy, leading 
to important undesirable health effects and even deaths 
attributable to harmful long-term effects of the treatment.  

Gene expression levels at the tumor cell are predictive of 
cancer sub-type and this information can be used to inform 
medical decisions. Existing methods include dimension 
reduction approaches (Sørlie et al., 2001) or variable 
selection methods (Paik et al., 2004; Glas et al., 2006), all 
applied to expression profiles of a relatively small set of 
large-effect genes. Despite important advances in the use of 
gene expression profiles for classification of BC tumors 
(Sørlie et al., 2001) a large proportion of inter-individual 
differences in BC progression remain unaccounted for, 
making it difficult to implement a personalized approach to 
the BC treatment. In the example presented here, we 
developed models to assess the potential benefits of moving 
from prediction models based on a small set of genes towards 
the use of whole-transcriptome profiles. 

 

Data  
Data (N=186) was obtained from the TCGA and the 

outcome predicted was five-year survival (yes=157; no=29) 
of non-metastatic breast cancer patients, having estrogen 
receptor positive tumors at stage I or II. There is an FDA-
approved diagnostic assay (Oncotype DX, Genomic Health 
Inc, Redwood City, CA, Cronin et al., 2004; Paik et al., 
2004) based on the expression profiles of 21 genes, which 
after QC edition, we found 17 of the genes in the Oncotype 
assay. Later, we assessed the benefits of including the 
expression profiles of the genes in Oncotype diagnostic assay 
versus 17,899 genes that are not included in the standard 
Oncotype assay. In addition to gene expression profiles we 
also included age at diagnosis and ethnicity (Caucasian, 
African American, Hispanic and Others) of each patient.  

 

Models  
We begin by fitting baseline models based on covariates 

only (COV included age at diagnostic and ethnicity as the 
only predictors). This model was expanded by adding the 
random effects of the genes in the Oncotype panel (ONCO). 
Finally, we expanded the ONCO model by adding the 
random effects of 17,899 genes not included in the Oncotype 
panel (WGGE,=whole-genome gene expression). All models 
were fitted using the BGLR package (de los Campos and 
Perez, 2013). The response was treated as binary, using the 
probit link implemented in BGLR and random effects were 
assigned iid normal priors with separate variance components 
for the genes in the Oncotype assay and the rest of the genes 
not included in that panel.  

 

Analysis  
Variance components were estimated with the models 

above described to the full data set. Subsequently we 
assessed prediction accuracy of the model with the Area 
Under the Curve in ten-fold cross-validation, (AUC-CV) 
with random assignment of cases and controls to folds.  

 

Results  
Results are given in Table 1, when the oncogene 

expression profiles were included in the model (ONCO) they 
explained 9.4% of the variance of risk un-explained by 
demographics. This result confirms the association between 
the genes in the Oncotype test with BC progression, but, at 
the same time, it suggests that a large proportion of the 
variance in risk remains un-explained. When we included the 
GE profiles of all the genes available (WGGE model) the 
proportion of variance in risk explained increased to 27.4 
suggesting that indeed a sizable proportion of the variance of 
risk that was not explained by demographics and genes in 
Oncotype DX could be explained by integrating in the model 
genome-wide GE profiles. Importantly, our point estimates 
suggest that information from genes not included in the 
Oncotype test explained twice as much (18.9%) than those in 
the Oncotype (8.7%). Note, however, that all the credibility 
regions (in square brackets in the table) are wide, reflecting 
the small sample size used. Clearly, these results need to be 
confirmed with larger sample size. The AUC-CV of the COV 
model was 0.71, adding GE of genes in the Oncotype 
increased AUC-CV by a very small amount, finally when all 
GE profiles were jointly considered AUC-CV increased from 
0.71 to 0.75. 

Table 1. Results from preliminary data analysis 
Model Variance Component (%)1 AUC 
  Oncogenes2 Other3   
COV --- --- 0.71 
ONCO 9.4 [3.3;22.4] --- 0.72 
WGGE 8.7 [3.0;21.0] 18.9 [5.0;46.9] 0.75 
1: % of the variance in risk (liability scale), after accounting  
    for by demographics and [95% credibility region]. 
2: Oncogenes: Genes in the Oncotype array (17) 
3: Other: expression of genes (17,899) not in Oncogenes group. 
AUC: Area under the curve; COV: Models with covariates only; 
ONCO: Extends COV model by accommodating the genes in the 
Oncotype panel; WGGE: extends COV by incorporating whole 
genome gene expression. 

 

Discussion  

Estimates of variance components suggest that a sizable 
proportion of inter-individual  differences in risk that were 
not explained by demographics and GE profiles of genes in 
the Oncotype could be captured by adding to the model 
genome-wide RNA sequencing data. Prediction accuracy also 
increased when WGGE profiles were considered. The 
increase in AUC-CV was modest and this is likely due to 
small sample size. We expect that with larger sample size 
AUC-CV of both ONCO and WGGE will increase markedly, 
especially WGGE.  
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CONCLUDING REMARKS 
The availability of multi-layer omic data has increased in 

recent years and is expected to increase in years to come. 
This data has potential to advance our ability to predict health 
outcomes. However, the development of statistical methods 
for integration of multi-layer omic data into risk assessment 
methods lags behind. The majority of the methods used are 
either based on a limited number of risk factors on dimension 
reduction approaches. We argue that higher prediction 
accuracy could be obtained with full integration of whole-
genome-multi-layer omic profiles into risk assessment 
models.  

Whole-genome regression models were originally 
developed for prediction of genetic values using information 
from the genome (SNPs). These methods can be extended to 
accommodate additive effects of multi-layer omic data. 
However, due to the high-dimensional nature of omic data, 
accommodating interactions between risk factors represent a 
major challenge. Here we have discussed some parametric 
and semi-parametric approaches that can be used to handle 
some of those challenges.  

Some omic profiles (e.g., the transcriptome) vary across 
space (tissue) and time; therefore, predictions of outcomes of 
diseases that are tissue-specific such as cancer are likely to 
have the most potential. The example presented in this 
article, although preliminary, suggests that integration of 
whole-genome profiles of gene expression can lead to risk 
assessment models with predictive power above and beyond 
only considering the expression profiles of large-effect genes. 

Although multiple methodological and empirical 
questions remain open, we believe that the integration of 
multi-layer omic profiles into risk assessment models 
represents a promising approach and one that merits more 
research efforts. 
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