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ABSTRACT: Genomic prediction estimates QTL effects 
by exploiting LD. High LD can only occur when SNPs and 
QTL have similar minor allele frequencies (MAF). Marker 
panels tend to use SNPs with high MAF and will have 
limited ability to predict rare QTL. In practice, increasing 
SNP density has not improved prediction accuracy. This 
might be explained if a trait had many rare QTL. In such 
cases, linear models fitting haplotypes could have an 
advantage because haplotypes could be in complete LD 
with QTL alleles. SNP genotypes were simulated with 200 
SNPs per cM. Genomic breeding values were predicted 
using either SNP genotypes or non-overlapping haplotypes. 
When QTL had low MAF, prediction accuracy from 
haplotype models were significantly higher than for SNP 
models. Results suggest that haplotype models can be an 
efficient alternative to SNP models especially when traits 
are controlled by many rare QTL. 
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Introduction 
Implementation of genomic evaluation into 

breeding programs has been successful because genomic 
prediction of breeding values is more accurate than 
pedigree-based parent average for many economically 
valuable traits. With the rapid progress in genotyping and 
next-generation sequencing technologies, high-density SNP 
genotypes have been collected for increasing numbers of 
animals through chip genotyping, genotyping-by-
sequencing or imputation. Accuracy of genomic prediction 
is expected to increase with increasing SNP density due to 
the assumption that SNPs in high linkage disequilibrium 
(LD) with quantitative trait loci (QTL) or even the QTL 
themselves could be included in the panel, and hence can 
explain most of the additive genetic variance. However, 
results from both simulation and field data analyses show 
limited advantage in prediction accuracy of using 770K or 
sequencing SNPs over 50K SNPs (VanRaden et al. 2011, 
Erbe et al. 2012). 

Given that most traits in breeding objectives have 
comprised survival, growth, or reproduction of the 
individual, they have undergone long natural and intense 
artificial selection, and QTL affecting such traits are likely 
to have low minor allele frequencies (MAF). SNPs that are 
included on SNP chips are usually chosen from sequencing 
and prototype genotyping of reference samples and have 
generally been chosen to have high MAF. Since high or 
complete LD can only exist between two loci that have 
similar MAF, prediction accuracy for traits controlled by 
rare QTL is difficult to improve by increasing density of the 
SNP panel if the additional SNPs have high MAF. 
Moreover, increasing SNP density exacerbates statistical 

and computational difficulties for linear models when 
fitting increasingly large numbers of SNPs. 

Both the problems of incomplete LD and 
expensive computation could be addressed by fitting 
haplotypes constructed from phased SNP genotypes. First, 
although rare QTL cannot be in high LD with common 
SNPs, they can be in high LD with haplotypes (Goddard 
and Hayes, 2007). Second, with increasing SNP density, the 
number of observable unique haplotypes eventually 
asymptotes due to finite population size and becomes less 
than the number of SNPs, at which point haplotype models 
will have lower dimension than SNP models. 

Previous studies on haplotype models for genomic 
prediction were based on haplotypes constructed from low 
density SNP genotypes, in which the LD between haplotype 
and QTL was incomplete (Calus et al. 2007, Villumsen et al. 
2008, Hickey et al. 2012). Although these studies reported 
advantages in prediction accuracy of haplotype over SNP 
models for specific haplotype sizes and with modeling of 
similarity among haplotype alleles, the potential advantage 
of haplotype models in prediction accuracy and 
computational efficiency when SNP density approaches 
sequence data, where there is almost complete LD between 
haplotype and QTL alleles regardless of the MAF of QTL, 
has not been studied. 

Thus, the objectives of this study were to 
investigate the effect of MAF of QTL on prediction 
accuracy and to test the hypothesis that prediction accuracy 
can be improved with less computational burden by fitting 
haplotypes. 

 
Materials and Methods 

Simulated datasets. The initial generations 
comprised a population with effective size 500 that was 
randomly mated for 500 generations to reach mutation-drift 
equilibrium, before being reduced to effective size 100 and 
randomly mated for another 100 generations to generate LD 
spanning longer genomic distances. The population was 
then expanded to 2,000 individuals in the following 20 
generations to represent the base population. A random 
sample of 1,500 individuals from this population was 
sampled, of which 1,000 individuals were used for training 
and the remaining 500 for validation. 

The genome comprised two chromosomes, each 
with length 100cM. Initially, 80,000 SNPs were evenly 
positioned on each chromosome and a sufficient number of 
QTL candidate loci were randomly positioned within every 
1 cM chromosomal segment. All SNPs and QTL were bi-
allelic with initial allele frequencies 0.5. QTL effects were 
randomly sampled from a Gamma distribution with scale 
0.4 and shape parameter 1.66, and had equal chance to be 



positive or negative. Mutation rate was 2.5×10-6 per locus 
per meiosis. 

In the base population, 20,000 SNPs per 
chromosome and 1 QTL in each 1cM segment were 
randomly sampled according to different assumptions on 
MAF of SNPs and QTL. Two scenarios were simulated for 
the MAF of QTL: 1) all QTL had MAF > 0.06 (common 
QTL), and 2) all QTL had MAF between 0.01 and 0.06 
(rare QTL). For both common and rare QTL scenarios, 
datasets were generated where all 40,000 SNPs had MAF > 
0.06 (common SNP). Specifically for the rare QTL scenario, 
an additional dataset with all 40,000 SNPs having MAF > 
0.01 was generated. 

In the base population of size 2,000, the effects of 
the selected QTL were scaled to achieve a total genetic 
variance of 4.29. True breeding values (TBV) were 
calculated by summing up all QTL effects for a given 
individual. Normal random variables with mean zero and 
variance 10.0 to represent residual effects were added to 
TBV to generate phenotypic values for a trait with 
heritability 0.3. Twenty random replicates were simulated 
for each combination of scenarios of MAF of QTL and 
MAF of SNPs. 

Statistical analyses. Genomic estimated breeding 
values (GEBV) for validation individuals were predicted 
using linear mixed models fitting SNP genotypes or 
haplotypes. Models BayesA and BayesB (Meuwissen et al., 
2001) were used to estimate SNP allele substitution or 
haplotype effects. 

In the analyses with models fitting haplotypes, the 
linkage phase of the 40,000 SNPs was assumed known 
without error for both training and validation individuals. 
This assumption is justified because high phasing accuracy 
could be achieved under simulated SNP density, (e.g. 
Browning and Browning, 2007). The haploid genome was 
divided into non-overlapping segments of 1.0cM or 0.2cM. 
Unique SNP haplotypes for each segment that had a 
frequency > 0.01 in the combined training and validation 
population with size 1,500 were defined as common 
haplotypes. Either all unique or only common SNP 
haplotypes were fitted in the model for genomic prediction. 
Those haplotypes only present in validation population had 
zero estimated effects, and they didn’t contribute to 
prediction of GEBV. 

Formulation of models BayesA and BayesB based 
on haplotypes (termed “BayesAH” and “BayesBH”, 
respectively) was similar to Meuwissen et al. (2001), except 
every unique haplotype allele was considered to have a 
random effect with an independent t distribution as prior. 
Value of π in BayesBH was defined as the proportion of 
unique SNP haplotypes that were not in LD with any QTL 
alleles, which was set to 0.97 and 0.95 when segment sizes 
were 1.0 and 0.2cM, respectively. 

Point estimates for SNP allele substitution effects 
and haplotype effects were their posterior means estimated 
from Markov chain Monte Carlo samples with chain length 
11,000 and the first 1,000 discarded as burn-in. Prediction 
accuracy of GEBV was represented by the Pearson 
correlation coefficient between GEBV and TBV in 
validation individuals. 

 

Results and Discussion 
Haplotype frequencies and concordance 

between SNP haplotypes and QTL alleles.  Frequencies 
of unique haplotype alleles were calculated for one dataset 
with MAF of QTL and SNP > 0.06. With SNP haplotype 
size 1.0cM, the total number of unique haplotype alleles 
across all 1.0cM segments was 10,559, of which 1,628 were 
common haplotypes (Table 1). When haplotype size was 
0.2cM, the numbers of all and common haplotype alleles 
were 11,069 and 3,722, respectively. Under mutation and 
random drift, only 15% and one third of haplotype alleles 
were common when haplotype size was 1.0 and 0.2cM, 
respectively (Table 1). The dimension of the haplotype 
model was one quarter of the dimension of the SNP model, 
and models fitting only common haplotype alleles had less 
than one tenth dimension of the SNP model, resulting in a 
potential 10-fold greater computational efficiency for 
haplotype models. Table 1 shows results from one 
simulated dataset where SNP density was 20 per cM, 10 
times less dense than the aforementioned scenario, which 
was similar to Villumsen et al. (2008) and Hickey et al. 
(2012). When SNP density increased 10 fold, the number of 
unique haplotype alleles increased less than two fold and 
the number of common haplotype alleles stayed the same, 
which suggested that the dimension of haplotype model 
would not increase much with increased SNP density. 

 
Table 1. Average number of unique (No. Allele) and 
common (No. Common) haplotype alleles, and the 
proportion of discordant (Discordant %) haplotype 
alleles across all genome segments in the scenario of 
common QTL and common SNPs. 

Segment length No. Alleles No. 
Common 

Discordant 
% 

200 SNPs per cM 
1.0cM 52.8 8.1 0 
0.2cM 11.1 3.7 0 

20 SNPs per cM 
1.0cM 36.9 7.4 1.7% 
0.2cM 5.8 3.1 2.7% 

 
Linkage disequilibrium exploited by the haplotype 

model was investigated by the concordance between 
haplotype alleles and QTL alleles. Discordant haplotypes 
were defined as those that carried both the major and minor 
QTL allele within the haplotype region, which meant that 
the LD between haplotype and the QTL allele was 
incomplete. The proportion of discordant haplotypes among 
all unique haplotypes within the population is given in 
Table 1. When SNP density was 200 per cM, there were no 
discordant haplotypes, suggesting complete LD between 
haplotype and QTL alleles, while a small proportion of 
discordant haplotypes existed when SNP density was 20 per 
cM. 

Prediction accuracy from SNP and haplotype 
models with different MAF of QTL. When SNP MAF > 
0.06, prediction accuracies of SNP models were much 
higher for traits that were controlled by common QTL than 
for traits controlled by rare QTL (see first two columns of 
Table 2). This suggests that prediction accuracies from the 



same SNP panel can vary between traits, depending on the 
MAF of QTL for the trait, and that traits for which the QTL 
have similar MAF as SNPs on the panel are expected to 
have relatively high accuracy. Including SNPs with MAF < 
0.06 into the model could increase prediction accuracy of 
SNP models for traits controlled by rare QTL (third 
columns of Table 2). These results are in agreement with 
those of Druet et al. (2014), who found that prediction 
accuracy could be increased up to 30% using sequencing 
data when the trait was controlled by many rare QTL, 
because many more rare SNPs can be captured by 
sequencing data than SNP chips. 
 
Table 2. Mean prediction accuracies1 across 20 
replicates 

MAF QTL > 0.06 0.01~0.06 0.01~0.06 
MAF SNP > 0.06 > 0.06 > 0.01 
BayesA 0.778 0.491 0.647 
BayesB 0.829 0.613 0.788 
BayesAH, 1.0cM2, a3 0.729 0.652 0.665 
BayesAH, 1.0cM, c3 0.728 0.646 0.659 
BayesAH, 0.2cM2, a 0.776 0.657 0.685 
BayesAH, 0.2cM, c 0.767 0.643 0.674 
BayesBH, 1.0cM, a 0.721 0.774 0.792 
BayesBH, 1.0cM, c 0.736 0.756 0.774 
BayesBH, 0.2cM, a 0.811 0.769 0.798 
BayesBH, 0.2cM, c 0.806 0.743 0.772 

1  Standard errors of mean were less than 0.025. 
2 1.0cM, haplotype models with segment size 1.0cM; 0.2cM, haplotype 
models with segment size 0.2cM. 
3 a, haplotype models fitting all unique SNP haplotypes; c, haplotype 
models fitting only common SNP haplotypes. 

 
Prediction accuracies from haplotype models 

generally followed a similar trend as accuracies from SNP 
models, but were less affected by the MAF of QTL. This 
could be explained by the fact that haplotypes tended to be 
in higher or complete LD with QTL than single SNPs, 
regardless of the MAF of QTL. Haplotype models had no 
advantage over SNP models when QTL were common 
variants, but had significant advantage when QTL were rare 
variants (Table 2). Results suggest that for those traits 
where the prediction accuracy hardly improves by 
increasing chip SNP density, haplotype models may give 
higher prediction accuracy due to capture of QTL alleles by 
complete LD. 

Models that fitted 0.2cM haplotypes generally had 
higher prediction accuracy than models that fitted 1.0cM 
haplotypes. There are two possible reasons for this. First, 
smaller size genome segments had fewer unique haplotype 
alleles and hence a smaller number of effects to be 
estimated within one segment, resulting in more accurate 
estimates of unique haplotype effects because more data is 
available to estimate their effects. Second, compared with 
large size segments, recombinations happened less often 
within small size segments and hence the proportion of 
discordant haplotypes tended to be smaller. On the other 
hand, the size of segments needed be large enough to allow 
enough segregating alleles to be in high or complete LD 

with QTL alleles. One critical question for haplotype 
models is the optimal segment size to achieve complete LD 
while to keep the overall number of haplotypes small. 
Villumsen et al. (2009) reported that fitting 10-SNP 
haplotypes of length 1.0cM gave highest prediction 
accuracy with a simulated marker density of 10 SNPs per 
cM. The optimal segment size for haplotype models largely 
depended on SNP density, level of LD and effective 
population size, and hence needs to be determined for 
specific datasets. 

In most scenarios, prediction accuracy only 
decreased marginally when rare haplotypes were excluded 
from the model. Since few data were available to estimate 
effects of rare haplotypes, the estimated effects would be 
shrunk to zero and, thus, excluding rare haplotypes from the 
model had only minimal effect on prediction accuracy. The 
advantage of excluding rare haplotypes is the significant 
improvement in computational efficiency since a large 
proportion of haplotypes is rare, thus could result in an up 
to 10-fold reduction in the dimensionality of the model. 
 

Conclusion 
Under SNP density similar to genotyping by a 

770K SNP chip or sequencing, haplotype models were 
shown to have significantly higher prediction accuracy than 
SNP models for traits controlled by rare QTL, with much 
less computation effort required. Thus, haplotype models 
can be efficient alternatives to SNP models when SNP 
density is high because they result in prediction accuracies 
that are less sensitive to the MAF of the underlying QTL 
and are computationally more efficient. 
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