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ABSTRACT: A wide range of methods for predicting 
phenotypes based on genomic data has become available. 
Increasingly, the focus is also being set to machine learning 
methodology. Despite this progress, the prediction of 
complex traits from high density SNP-panels remains an 
extremely demanding task, particularly in terms of the 
computational effort required in calibration and prediction. 
We present a fast learning algorithm for artificial neural 
networks which was introduced by Huang et al. in 2004. 
Our experimental results show that this approach is able to 
achieve good generalization performance with much less 
computational effort while outperforming the traditional 
gradient-based learning in artificial neural networks, which 
is a great advantage when analyzing high dimensional data. 
We demonstrate the capabilities of the new approach to 
genomic predictions in animal and plant breeding. 
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Introduction 
Today, in animal and plant breeding, non- and 

semi-parametric, as well as machine learning methods, have 
become increasingly important in performing genome-
enabled predictions of complex traits. At the current times 
of high-density panels and sequence information, prediction 
become challenging in terms of computational costs and 
efficiency. The number of markers now vastly exceeds the 
number of records, with the effect that typical fitting 
methods, such as least squares regression, often require 
some prior variable selection or shrinkage estimation 
procedure. When using machine learning approaches, one is 
usually facing a large number of parameters, non-linear 
training procedures and the problem of over-fitting. 
Therefore, the computational costs are usually even larger 
than those of standard parametric methods, which only 
require the solution of linear systems. A notorious example 
is the back-fitting algorithm for the training of artificial 
neural networks, which must be processed iteratively. 
However, the additional effort is usually compensated by an 
improved generalization performance. To overcome this 
computational challenge, a fast learning algorithm for 
single-hidden-layer feed-forward neural networks, called 
extreme learning machine (ELM), was proposed by Huang 
and coworkers (Huang et al. (2004), Huang et al. (2006)).  

Since its invention, the ELM has had a tremendous 
impact in the field of machine learning as well as on its 
close relatives, such as data mining and pattern recognition. 
For a survey on its various applications see Huang et al. 
(2011). The reason for its success is twofold. On one hand, 
the underlying algorithms are almost trivial when compared 

to more sophisticated methods such as support vector 
machines (SVM) or artificial neural networks trained by 
back-propagation (to which we refer here as ANN). On the 
other hand, despite this simplicity, several studies have 
revealed that its predictive performance is generally 
comparable to that of the standard methods mentioned 
(SVM and ANN), with often diminished training times. In 
this contribution, we employ the ELM to predict milk traits 
from dairy cattle data with molecular marker information, 
which is to our knowledge the first application of this kind, 
and compare the results to an ANN approach with the same 
input and output configuration. 

 
Materials and Methods 

Extreme Learning Machine. The theory of the 
Extreme Leaning Machine may be approached from two 
directions, starting either from ANN, or from basis function 
expansion methods. As the neural network perspective 
seems to be common in the literature, we consider the 
second alternative in the brief summary that follows. For 
this, assume we are given a data set (𝑥𝑖 ,𝑦𝑖)1≤𝑖≤𝑁  of size 𝑁, 
where 𝑥𝑖 ∈ ℝ𝑀  denotes an 𝑀-dimensional  predictor and 
𝑦𝑖 ∈ ℝ is the corresponding response variable. A common 
method to describe the relationship between the predictors 
and the observations is to assume a linear expansion into a 
number of 𝐾 basis functions 𝑓𝑘: ℝ𝑀 → ℝ,  
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Given this model, the task is then to minimize the residual 
sum of squares of the data set,  
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which, through variation with respect to 𝛽 , quickly leads to 
the usually over-determined (since 𝐾 ≤ 𝑁) linear system 
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Denoting the components by 𝑭, 𝜷, and 𝒚, the least-squares 
solution of this equation is given by 
 

 𝜷 = 𝑭†𝒚 (4) 
 



where 𝑭†  stands for the Moore-Penrose pseudo-inverse 
(Golub and van Loan (2012)). Though there are several 
methods to calculate this pseudo-inverse, the singular value 
decomposition is usually a convenient choice due to its 
good stability properties (Press (2007)). Solving the least-
squares problem for the basis expansion model therefore 
requires a SVD of a matrix of size 𝑁 × 𝐾, which for 𝐾 ≤ 𝑁 
scales as ℴ(𝐾𝑁2). 

Note that the predictor dimension 𝑀 has not 
entered the derivation so far, and will eventually do so only 
in the function evaluation step for the construction of the 
coefficient matrix. Thus, at least in principle, this allows for 
large dimensions of the predictor space to be treated, as is 
the case in this work. 

The crucial point in model (1) is the selection of an 
appropriate basis set, and several statistical methods exist 
which differ only in this respect, such as linear regression, 
logistic regression, spline interpolation, and many more. 
The particular choice leading to the ELM is given by 
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Here, 𝑤𝑘𝑚  and 𝑏𝑘  are randomly chosen real numbers 
(according to any random distribution), whereas 𝑔 denotes 
a function which in the ELM is usually taken to be the 
sigmoid function. 

In combination with the model (1), equation (5) 
allows for its interpretation as a single-hidden layer 
artificial neural network with randomly chosen connections 
and biases. More precisely, this network consists of 𝑀 input 
neurons, 𝐾 hidden neurons with sigmoid activation function 
and a single output neuron with linear activation function. 
𝑤𝑘𝑚  stands for the connection strength between input 
neuron 𝑚  and hidden neuron 𝑘 , 𝑏𝑘  for the corresponding 
bias (intercept), and the coefficients 𝛽𝑘 are the connection 
strengths between the 𝑘-th  hidden node and the output 
layer, as shown in Figure 1. 

 
Figure 1. ELM architecture of a Single-hidden layer 
artificial neural network 

 With the model being the same as a conventional 
neural network, the major difference that makes up the 
ELM is its training. The standard method proceeds by 
optimizing all involved parameters, i.e., 𝑤𝑘𝑚 , 𝑏𝑘  and 𝛽𝑘 . 
Due to their non-trivial dependencies, the training needs to 
be done layer by layer in a process called back-propagation. 
In contrast, the ELM randomly fixes a large number of 
coefficients in advance, and leaves only the task to 
determine the output layer connection strengths. Due to the 
linear activation function in the output node, this can be 
accomplished by the least-squares solution outlined in Eqs. 
(2) to (4). Further, the method presented can easily be 
extended to include a regularization parameter (via 
modification of Eq. (2)) or to use kernels such as radial 
Gaussian functions (via modification of (5)). 

Benchmark model. To compare the predictive 
ability of the new algorithm with a standard network we 
used a single-hidden layer artificial neural network with 
back-propagation algorithm as benchmark. Here, the 
connections and biases were chosen optimally using a given 
training set. To avoid poor generalization ability early 
stopping was implemented in training. Both models, ANN 
and ELM, were set up with a sigmoid activation function in 
the hidden layer and a linear function in the output layer. 
For the ANN, an architecture of ten hidden neurons 
achieved the best predictive ability when dealing with the 
entire marker set. 

Data. Genotypic and phenotypic information of 
3,341 German Fleckvieh bulls were employed in the 
machine. All animals were genotyped with a 50k SNP-
panel and after quality control 39,344 SNP markers 
remained in the analyses. Quality control included the 
elimination of SNPs with minor allele frequency < 0.05 and 
missing genotype frequency > 0.95. For the remaining loci, 
missing genotypes were imputed using the population based 
imputing algorithm Minimac (Howie et al. (2012)), and 
haplotypes were inferred using MaCH  (Li et al. (2010)). 
DYD of three milk traits (milk yield, fat yield and protein 
yield) were used as phenotype records in the analysis. To 
account for ANN and ELM peculiarities feature scaling was 
applied to both phenotypic and genomic data, so the data 
was normalized to the [-1,1] range, to enhance numerical 
stability.  

To assess the predictive performance of the ELM 
and of the standard ANN, a 10 fold cross-validation scheme 
was used. The dataset was randomly split into ten equal 
folds of phenotypes and genotypes. Then, nine folds were 
used for training and one for testing. This was rotated ten 
times so that every fold served as test set once. The average 
correlations between predicted and true phenotype in the 
testing sets of all runs then were used to evaluate predictive 
ability. 

 
Results and Discussion 

The results represent our first and recent 
application of the ELM and serve as an illustration of the 
advantages of this promising approach. Results are given in 
Table 1, showing the correlation obtained in the cross-
validation runs for a ELM with 1000 hidden nodes (the 
number of hidden nodes needs to be much larger than for 
the ANN, in order to compensate for the random 



initialization). The ELM was able to give predictions with 
accuracy well comparable to that of the ANN approach. 
The crucial point here is that ELM needed significantly less 
computation time. On average, for a ten-fold cross-
validation, the ELM required 1.3 hours, whereas the ANN 
with ten neurons in the hidden layer needs 11.2 hours for 
the same task. Another advantage is that, with increasing 
numbers of hidden neurons, the prediction performance of 
the ELM was prone to increase as well. As an example, we 
applied the cross-validation procedure to an ELM with 
10000 hidden neurons for the trait protein yield. This 
resulted in a largely increased average correlation 
coefficient of 0.618 between true and predicted phenotype 
(computation time for a ten-fold cross-validation: 26,6 
hours). As shown in our recent work (Ehret et al. to be 
published), it is much more difficult to tune the standard 
ANN to such levels of prediction accuracy, when the entire 
genotype matrix is used for predictions. 

 
Table 1. Estimated predictive abilities for  three milk 
traits 

Trait ELM ANN 
 r r 

Milk yield 0.468 0.469 
Fat yield 0.453 0.453 

Protein yield 0.450 0.477 
 r= average Person correlation of cross-validation 
 runs, ELM= Extreme learning machine with 1000 
 hidden neurons, ANN= Artificial neural network 
 with 10 hidden neurons and back-propagation 

 
Conclusion 

With a low number of neurons the ELM matches 
the performance of the ANN in predicting milk traits from 
genomic information, while using the whole marker 
information but drastically reducing the computational cost. 
Increasing the number of hidden neurons produced 
promising results, as shown for the trait protein yield. 
Although the study was based on limited data, our results 
suggest that the ELM is likely to be useful for predicting 
complex traits using high-dimensional genomic 
information, a situation where the number of coefficients 
that need to be estimated exceeds sample size. The ELM, in 
the same way as SVM or ANN, has the ability of capturing 
nonlinearities, but its great advantage is in keeping the 
computational cost at a reasonable level. The predictive 
ability seemed to be enhanced by using a larger number of 
neurons in the ELM, which is in contrast to the standard 
ANN approach. However, further studies are needed to 
confirm these results and explore the capabilities of the 
ELM. 

In summary, the ELM is a promising method for 
prediction of future phenotypes from high dimensional 
genomic data sets, as has been suggested by the presented 
study. Hence, a detailed investigation of its capabilities will 
be an important component in our future work. 
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