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ABSTRACT: Identifying signatures of recent or ongoing 
selection is of high relevance in livestock population ge-
nomics. From a statistical perspective, determining a proper 
testing procedure and combining various test statistics is 
challenging. Based on an extensive simulation study we 
discuss the statistical properties of eight different selection 
signature statistics. It is demonstrated, that a reasonable 
power to detect selection signatures requires high density 
marker information as obtained from sequencing, while 
small sample sizes are acceptable. We suggest a novel prin-
cipal component based combination of different statistics, 
which yields a statistic with similar power as the best single 
statistic but with an improved positional resolution. An 
accurate and comprehensive set of selection signatures will 
be the basis for a better understanding of the forces driving 
artificial selection and will help to design more efficient 
livestock breeding programs. 
Keywords: selection signatures; statistical testing; statisti-
cal power 
 

Introduction 
The term “population genomics” was first intro-

duced by Gulcher and Stefansson (1998) and is used for the 
analysis of genetic variation on a whole genome basis with-
in or across populations.  Certain characteristics of popula-
tions (like effective population size or population differen-
tiation) can be inferred using population genomic ap-
proaches. Another important field of application is the de-
tection of so-called “selection signatures”, well defined 
patterns in the genome generated by selective forces. In the 
livestock breeding context it is hoped that identification of 
selection signatures leads to a better understanding of how 
selection operates on the genomic scale, which in turn may 
help to create more efficient selection schemes.  

Detecting selection signatures poses a number of 
statistical challenges. In this contribution, we address some 
important statistical problems in this context, review sug-
gested solutions, and finally illustrate some of these prob-
lems on the basis of an extended simulation data set. 
 

Statistical problems 
Selection signature statistics. Selection signa-

tures in most cases are computed from genomic data only, 
i.e. from high-throughput genotyping data or from whole 
genome sequence data. Usually the entire genome is sys-
tematically scanned for such signatures. Selection produces 
the following basic signals in the proximity of a selected 
locus (i) the allele frequency spectrum is shifted towards 
extreme (high or low) frequencies, (ii) there is an excess of 
homozygous genotypes, (iii) long haplotypes exist with 
high frequency, and (iv) local population differentiation is 
extreme. All selection signature statistics that have been 
suggested pick up one or a combination of these signals. In 

most cases, a whole genome screen is conducted in that for 
each single locus (mostly SNPs) a value of the chosen test 
statistic is calculated. In some cases, point-wise statistics 
are strongly masked by random noise, so that moving, slid-
ing, or creeping windows approaches are used to smoothen 
the picture and remove the noise.  

In any case, this results in a vector of test statistic 
values, the length of the vector being the number of loci 
which is typically in the order of 105 – 106 (for SNP array 
based analyses) or >107 for sequence-based analyses. Nota-
bly we must assume a strong autocorrelation structure in 
this vector, since neighboring SNPs are known to be in 
linkage disequilibrium (see e.g. Qanbari et al. (2010)) and 
hence statistics calculated at these loci are expected to be 
correlated as well. Such a vector can be available for a 
single or for multiple test statistics, in the latter case it must 
be assumed that different test statistics might be correlated, 
since many of the suggested statistics reflect the same basic 
signal. 

Assuming the situation described, the major statis-
tical challenge is to identify ‘significant’ signatures in some 
methodological sound procedure. We will first review the 
different alternatives and approaches suggested for this task 
and will discuss their strengths and weaknesses. We will 
argue that results of a single test alone might not offer a 
sufficient fundament for clear and reproducible results. 
Therefore we will present suggestions made in the literature 
of combining the outcome of several tests and discuss their 
strengths and limitations. We will then suggest a simple 
alternative method of combining several test outcomes in 
one or several complementary combined tests. This ap-
proach will be illustrated with an extensive simulation study 
considering a large variety of selection scenarios to which 
eight different selection signature test statistics with very 
different performance profiles will be applied. We will 
show that the combined test leads to a better positional 
resolution of the selected region and in most cases has simi-
lar power as the locally most powerful single test (which 
may differ across scenarios). As a by-product, it will be 
demonstrated that selection signature analysis profits most 
from high-density genotypes (ideally obtained from whole 
genome re-sequencing), while good results can already be 
obtained with a rather moderate sample size. This finding 
suggests that the lack of consistency and reproducibility of 
the results of the first genome-wide scans for selection 
signatures in livestock populations may be caused by the 
insufficient marker density of the medium-density SNP 
arrays used to generate the data. 

Statistical testing. A statistical test in the classical 
sense is based on the probability 𝑝, that an observed value 
of the chosen test statistic calculated from the data at hand 
can emerge under the assumption of the null hypothesis, in 
the present case assuming that the population studied was 



not under selection (in general or at the locus considered). 
This requires that the distribution of the test statistic under 
the null hypothesis is available. There are different ap-
proaches to determine this distribution: 
(i) The test statistic has a theoretically known distribution.  
(ii) The distribution can be determined empirically, e.g. by 

permutation of the data. This is a widely used strategy 
in situations where the association of two types of ob-
servations (e.g. genotypes and phenotypes) is tested, as 
e.g. in QTL mapping. However, this principle is diffi-
cult to adopt for selection signature analysis where we 
usually just have genotype observations. Permutation 
tests have been suggested for haplotype-based analyses 
(e.g. Qanbari et al. (2012)) where permutation breaks 
up the sequential patterns, or in between population 
analyses (Gianola et al. (2010)), where random as-
signment of individuals to populations can mimic the 
case of no differential selection.  

(iii) The distribution can be obtained by simulation of the 
data under the null hypothesis. For this, it is necessary 
to simulate data using a realistic demographic model 
by forward or backward (coalescent based) simulation. 
While such simulations have been applied in human 
genetics studies (e.g. Grossman et al. (2010)) phyloge-
netic patterns in most farm animals are rather complex 
and little understood so that calibrated demographies 
are not available. For this and other reasons, 
Woolliams and Corbin (2012) conclude that backward 
simulation via coalescence theory, although computa-
tionally attractive, may be of limited use in a farm ani-
mal context. 

(iv) The distribution is derived under the assumption that 
the vast majority of loci is not under selection. It is a 
sensible assumption that the majority of loci are not 
under selection and just a few are. In this case the ma-
jority of SNPs can be used as an unselected ‘control’ 
(or unselected population forming the basis to derive 
the empirical distribution of the test statistic under the 
Ho) in contrast to the few selected ones forming signals 
(Gianola et al. (2010)). 

Very close to this last suggestion is the widely used ap-
proach to identify the most extreme observed values of the 
test statistics as selection signals. This is sometimes called 
an ‘outlier’ statistic, which is somewhat misleading, since 
in most cases just extreme values are reported, regardless of 
the fact whether these values are from the same distribution 
as the bulk of observations or from a distinct one – only in 
the latter case would the term ‘outlier’ be appropriate. 
In many studies the top 1 or 0.1 per cent of the test statistics 
are taken as ‘significant’ and often, their quantile value is 
reported as ‘p-value’. From a statistical point of view this is 
misleading, since the reported values do not reflect a proba-
bility under the null hypothesis. An obvious argument 
demonstrating the shakiness this approach is that there 
always will be a set of loci with values of the test statistic in 
the top 1 per cent, so even if there is no selection at all, the 
method will report ‘significant’ results.  

It should be noted, that not all selection signature 
studies refer to classical frequentistic genetics with a re-
spective definition of error probabilities referring to a clear-
ly defined null hypothesis, but some approaches have been 

suggested in a Bayesian framework applying Bayes factors 
to assess significance (e.g. Nielsen et al. (2009); Grossman 
et al. (2010)). 

The concept described above implicitly assumes 
that the all demographic processes (such as drift, bottle-
necks, fluctuating population sizes, stratification) affecting 
the population as a whole will create a typical set of ge-
nomic patterns across the genome. By looking for patterns 
strongly deviating from these overall patterns, i.e. using the 
majority of SNPs as sort of ‘control’, locus specific effects 
(such as selection) will be detected.  

However, it was argued (Biswas and Akey (2006)) 
that locus-specific deviations can also be generated by non-
locus specific forces: imagine for instance a population 
having recently gone through a very severe bottleneck. By 
chance (random genetic drift), only gametes with a specific 
haplotype in a certain region may survive this bottleneck. In 
the subsequent generations the population might expand 
again, but since there is only a single haplotype available, 
only this haplotype will be present until it is eventually 
broken down by mutations or admixture with introgressed 
genetics. A haplotype-based approach for selection signa-
ture detection, such as the widely used |iHS| statistic 
(Voight (2006)) will detect a high frequency long-range 
haplotype in such a data set and will interpret it as an indi-
cation of  locus-specific selection in the respective region, 
although the signature has been created through random 
drift alone without any directional selection at all. It is well 
known, that severe bottlenecks have appeared in the recent 
demographic history of many livestock populations, thus it 
must be kept in mind that the mechanisms described (and 
similar ones) may lead to false positive signals, and then 
interpretation of results should be carried out with great 
caution. 

Simulation study. The program msms (Ewing and 
Hermisson (2010)) was used to simulate population genet-
ics datasets under a neutral model and a single locus selec-
tion model, respectively. Each simulation scenario repre-
sents a 10 Mb genomic fragment with a constant recombi-
nation rate (1cM/Mb). In order to apply both within and 
between population selection signature statistics one half of 
the population considered remained unselected while the 
other half of the population was selected in each selection 
scenario. In the selection case a selected allele was posi-
tioned in the center of the fragment considered and in the 
reference scenario the selection coefficient was s = 0.02. 
Data for analysis were sampled when the frequency of the 
selected allele reached a predefined value p = 0.8. Selection 
signature statistics then were computed for sample sizes N 
= 50 gametes in each selected or unselected subpopulation, 
and the average marker distance was d = 2.5 kb. Starting 
from this reference scenario each parameter was varied over 
a range of values listed in Table 1 while all other parame-
ters were kept at the reference setting. 

 



Table 1: Parameter settings varied in the simulated 
selection scenarios. Reference values are underlined. 
Parameter Range of values 
Selection coefficient s 0.005, 0.01, 0.02, 0.04, 0.08 
Allele frequency p 0.2, 0.4, 0.6, 0.8, 1.0 
Sample size N 10, 30, 50, 70, 90 
Marker distance d 0.1, 0.5, 2.5, 12.5, 62.5 kb 

 
Eight different selection signature statistics were computed 
for each SNP: three statistics testing for divergent selection:  
FST (Gianola et al. (2010)), XPEHH (Sabeti et al. (2007)), 
XPCLR (Chen et al. (2010)), four statistics looking for a 
divergent allele frequency spectrum: Tajima’s D (Tajima 
(1989)), Fu&Li D, Fu&Li F (Fu and Li (1993)) and CLR 
(Nielsen et al. (2005)), and |iHS| (Voight et al. (2006)) 
looking for high frequency conserved haplotypes. All statis-
tics were orientated such that a high value indicates pres-
ence of selection.  

To obtain the empirical  distribution of the test sta-
tistics, one hundred simulations were run in which no selec-
tion was assumed in both populations, and the maximum 
observed value of each test statistic in each run was stored. 
The value cutting of the upper 1 per cent quantile of each 
statistic was used as an empirical significance threshold 
value.  

To assess the power of each statistic, one hundred 
replicates were simulated under the corresponding selection 
scenario. A selection signature was assumed to be detected 
if at least one SNP within a 500 kb window around the 
selected locus exceeded the empirical significance thresh-
old. This window size was determined by the extent of 
linkage disequilibrium in the simulated population. The 
percentage of detected signatures among all replicates is 
reported as the power. 

 
Results and Discussion 

Simulation scenarios. In the reference scenario, 
there is a clear separation between the methods considered 
regarding the power. Three methods (XPEHH, |iHS|, and 
CLR) have a power > 80%, while for all other methods the 
power is < 20%. The impact of the four parameters varied is 
depicted in Figure 1.  

Regarding the frequency of the selected allele 
(Figure 1A), |iHS| appears to be most powerful for ongoing 
selection processes where the target allele has a medium to 
high frequency (0.4 < p < 0.8). However, at fixation (p = 1) 
|iHS| has limited power (~40%), while XPEHH and CLR 
have 100% power. All other statistics are hardly affected by 
the allele frequency level. 

With a marker interval d = 62.5 kb, which is ap-
proximately the resolution obtained when genotyping 
mammals with 50k SNP arrays, all methods have a power < 
30% (Figure 1B). This may explain the low reproducibility 
of the results of some of the first selection signature studies 
with farm animal data (Qanbari and Simianer (2014)).  

 
 
Figure 1: Power of eight different selection signature 
test statistics when varying four different parameters: 
(A) Frequency of the selected allele; (B) Marker interval 
distance; (C) Sample Size; (D) Selection coefficient. 



Higher resolutions (note that in Figure 1B the 
scale of the x-axis is exponential) quickly lead to better 
results for the three ‘high power methods’ (XPEHH, |iHS|, 
and CLR), but in general all methods show an improved 
performance with resolution d = 0.1 kb, which is approxi-
mately what is obtained in whole genome sequencing. In 
this situation, the power of XPCLR comes close to the three 
top methods. 

Regarding the impact of sample size (Figure 1C) 
it appears that a rather limited value (N = 30 gametes, 
equivalent to 15 diploid individuals) is sufficient to reach 
reasonable results with the three ‘high power methods’. In 
contrast, the performance of the other methods does not 
profit from increased sample size (at least within the rather 
limited range taken into consideration). It should be noted 
that today in some farm animal applications much larger 
samples (thousands of gametes) are available, while the 
present study cannot provide any insight into the power of 
the methods considered in such a setting. 

Finally, it is shown that the power of XPEHH and 
CLR monotonically increases with increasing selection 
coefficient (Figure 1D), while |iHS| has highest power with 
an intermediate (s = 0.02) selection coefficient, but the 
power erodes both with stronger and weaker selection. 
Most of the other methods show a slight increase of power 
with increasing strength of selection, but overall the power 
of those methods stays at a low level. In general it is diffi-
cult to judge which of the simulated selection coefficients 
reflects selection intensities of practical relevance in live-
stock populations, because a wide range of selection inten-
sities is applied. While selection for some of the main pro-
duction traits is very intense, leading to up to 1 per cent 
improvement through genetic progress per year (Hill 
(2010)), selection for some functional traits, such as fertility 
or disease resistance, is weak, but has operated over long 
periods, even as ‘natural selection’ prior to the actual do-
mestication event. 

 

 
 
Figure 2: Heat map of the empirical power (in per cent) 
of eight different selection signature test statistics in 50 
kb intervals. The simulated scenario was s = 0.02, N = 
50, d = 0.1 kb and p = 1.0 (for |iHS|  p = 0.8). The red 
dashed line indicates the position of the SNP under se-
lection. The clustering of the test statistics is indicated 
on the left margin. 
 

A further aspect that deserves consideration is the 
positional resolution of the selection signature statistic. 
Figure 2 shows the power of the eight statistics in a scenar-

io with maximum marker density (d = 0.1kb) reported for 
intervals of 50 kb. It becomes evident that for most statis-
tics the highest power is focused around the selected posi-
tion, while especially for XPEHH and |iHS| the region of 
highest power is quite broad, indicating that positional 
resolution is limited. The |iHS| statistic was considered for a 
final frequency of the selected allele of p = 0.8, because 
under fixation (p = 1) this statistic has a massive loss of 
power (cf. Figure 1A).  

Combining test statistics. The eight test statistics 
considered in our simulation study are just a subset of all 
selection signature statistics suggested in the literature. 
Many of these statistics reflect the same phenomenon, as 
e.g. REHH (Sabeti et al. (2002)) and |iHS| are derived from 
the basic EHH (Sabeti et al. (2002)) statistic, trying to cor-
rect EHH for some local genetic pattern like a deviated 
recombination activity. Hence, those statistics are similar 
and highly correlated among each other. In other cases, 
statistics reflect very different signals, such as a deviated 
allele frequency spectrum within a population (CLR), high 
frequency long range haplotypes in a population (|iHS|) and 
extreme local divergence between populations (FST).  

Grossman et al. (2010) have suggested combining 
various signals into a composite of signals (termed CMS) 
mainly to improve the resolution of the detected selection 
signatures. A keystone of this approach is the ability to 
simulate data according to calibrated demographic models 
using the coalescent approach. For most livestock species 
the actual demography is largely unknown and, if it was 
known, would probably be hardly suited for simulation 
using a coalescent approach. Beyond that, the general ap-
plicability of coalescent theory in livestock genomics was 
questioned by Woolliams and Corbin (2012).  

Utsunomiya et al. (2013) suggested merging dif-
ferent genome wide scan statistics by combining p-values 
using a method suggested by Whitlock (2005). This method 
was successfully applied to detect selection signatures in 
beef cattle. However, it should be noted that some of the 
underlying assumptions of the method are hardly met, since 
the p-values of some of the single tests are not p-values in 
the classical statistical sense, but reflect quantile values 
from the empirical distribution of test statistic values under 
selection. Beyond this Utsunomiya et al. (2013) combined 
largely uncorrelated scan statistics. 

In our case, statistics are partly highly correlated. 
We calculated the correlation matrix for all 8 test statistics 
from the simulated data under the null hypothesis. We 
found that e.g. the pairwise correlations between Tajima’s 
D, Fu&Li D and Fu&Li F are all above 0.6 and the correla-
tion between XPCLR and FST is 0.26, while for instance 
the absolute correlation between |iHS| and all other statistics 
does not exceed 0.06. 

We thus suggest an approach that has the potential 
to combine several statistics that reflect the same selection 
signal, but is also able to reveal several combined statistics 
for different types of selection mechanisms. For this, we did 
a principal component analysis (PCA) of the correlation 
matrix of the eight test statistics. Table 2 reports the load-
ings and the proportion of variance explained by the first 
five principal components (PC1 to PC5). Not surprisingly, 
PC1 combines the signal of the three highly correlated 



statistics Tajima’s D, Fu&Li D and Fu&Li F. This compo-
nent explains 33 per cent of the overall variance in the cor-
relation matrix. It should be noted that PCs are constructed 
in an orthogonal way, so that they pick up complementary 
information and the resulting linear combinations are un-
correlated. Also, the ranking by proportion of variance 
explained does not tell anything about the usefulness or 
power of the respective PC, since a combination of highly 
correlated low power statistics will probably not lead to a 
high power PC. PC5, which later will be reported to be the 
most useful one, still explains 11 per cent of the overall 
variance and gives most weight to the high-power methods 
XPEHH, |iHS| and CLR. 

 
Table 2: Loadings and proportion of variance explained 
by the first five principal components (PC1 to PC5) 
derived from the correlation matrix of the eight selec-
tion signature statistics under the null hypothesis. Load-
ings with absolute values ≥  0.33 are underlined. 

 
 PC1 PC2 PC3 PC4 PC5 

XPEHH  -0.03 0.38 0.40 0.53 0.63 

XPCLR   0.02 0.67 -0.07 -0.05 -0.14 

|iHS| 0.00 -0.01 -0.89 0.28 0.33 

CLR  0.20 0.03 0.01 -0.74 0.63 

Tajima D 0.52 -0.01 -0.08 0.03 0.05 

FuLi D   0.57 -0.02 0.06 0.13 -0.12 

FuLi F 0.60 -0.02 0.04 0.12 -0.09 

FST  0.02 0.64 -0.17 -0.22 -0.25 
Variance  
Explained 33% 16% 13% 12% 11% 

 
We then formed new test statistics PC1 to PC5 by 

multiplying the loading of the respective test statistic by its 
value obtained in the simulation study and summing up 
over all eight tests. Scaling was appropriately taken into 
account (since the PCA was done based on the correlation 
matrix and not on the covariance matrix) and resulting 
combined test statistics again were orientated in such a way, 
that high values indicate selection. 

It was observed that across all scenarios PC5, 
which combines the high-power methods XPEHH and |iHS| 
together with the CLR statistic, has similar power as the 
locally most powerful single test (which may differ across 
scenarios). Figure 2 depicts this for variable sample size.  

Applying PC5 to screen for selection signatures in 
the simulated genome region shows that a composite of 
multiple test statistics provides a better positional resolution 
at the selected locus and reduces the stochastic noise in 
non-selected regions. This is demonstrated in Figure 3, 
where results for one replicate of the simulated selection 
scheme under reference assumptions are depicted. 

It should be noted that most of the eight single se-
lection signature statistics produce a high value of the test 
statistic at the position of the selected SNP. The only single 

statistic producing a strong and unique signal at the correct 
position in this case is XPEHH. For the majority of statis-
tics considered, though, these signals at the selected posi-
tion are not very focused and overlap with false positive 
peaks in non-selected positions.  
 

 
 
Figure 2: Power of eight different selection signature 
test statistics and the combined statistic PC5 with varia-
ble sample size 
 

The combined statistic PC5 is shown to produce a 
very strong and focused signal in the selected region with 
hardly any false positive signals at other positions. The 
range of the signal is very focused around the selected SNP 
and clearly outperforms the signals at non-selected posi-
tions. This high resolution will be helpful when annotating 
the genes associated with the selection signature. 

 
Conclusions 

The presented results illustrate that different test 
statistics behave differently in different scenarios. Most 
remarkable is the clear evidence for the usefulness of high 
density markers in selection signature analysis, suggesting 
that whenever possible such studies should be based on 
sequence data, while results obtained with low to medium 
density SNP arrays appear to be of limited reliability. We 
suggest a simple and straightforward way of combining 
different correlated or independent test statistics which is 
shown to be efficient in mapping selection signatures with 
high power and positional resolution. Selection signature 
analysis is a relatively novel and highly promising approach 
in livestock population genomics, the first chromosome-
wide screen for selection signatures being reported by 
Hayes et al. (2008). Important statistical challenges such as 
the problem of hard vs. soft sweeps (Hermisson and Pen-
nings (2005)) and the need of studying selection on whole 
pathways rather than on single SNPs (Amato et al. (2009)) 
could not be addressed here but certainly are highly rele-
vant in the context of livestock population genomics. An 
accurate and comprehensive set of selection signatures will 
be the basis for a better understanding of the forces driving 
artificial selection and will help to design more efficient 
livestock breeding programs. 

 



 
Figure 3: Observed values of the eight test statistics and 
PC5 in one replicate of the simulated reference scenario 
under selection. The red dashed line indicates the posi-
tion of the SNP under selection. 
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