
Proceedings, 10th World Congress of Genetics Applied to Livestock Production 
 

A Research Plan for the Identification of QTL 
 

M.E. Goddard1,2, I.M. MacLeod1, K.E Kemper1 , C.J. Vander Jagt2, K. Savin2, C. Schrooten4 and B.J. Hayes2,3. 
1University of Melbourne,  2Department of Environment and Primary Industries, 3Latrobe University, Melbourne, Australia, 

4CRV, 6800 AL, Arnhem, Netherlands. 
  
 

ABSTRACT: Past attempts to find mutations causing 
variation in quantitative traits important in livestock 
production have largely been thwarted by the small effects 
that individual mutations have. However, we now have 
more powerful tools, such as genome sequence on 
individual animals, that increase our power to identify the  
mutations underlying quantitative trait loci (QTL). Here we 
review the statistical methods used to analyze association 
studies and the biological information that might be used to 
discriminate between alternative sites as the causal 
mutation. As well as the small effect of most QTL, it is also 
difficult to identify causal mutations because they are 
typically in LD with other polymorphic sites and so one 
cannot decide which is the causal mutation. The problem 
caused by LD can be reduced by using multiple breeds and 
by fitting all sequence variants simultaneously with a 
Bayesian model in which many variants are expected to 
have no effect. The effect size of a QTL may be increased 
by using traits, such as gene expression, that are close to the 
primary effect of the mutations. Biological information, 
such as that provided for the human genome by the 
ENCODE project, can be incorporated into the statistical 
analysis of the association study so that objective estimation 
of the probability that each sequence variant has an effect 
on the trait can be made. 
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Introduction 
The tools of modern genomics are sufficiently 

powerful that many mutations causing simply inherited 
Mendelian traits have been identified. However, the 
variation in complex or quantitative traits is caused by 
mutations at many sites in the genome and by non-genetic 
or environmental variables and we have had much less 
success in identifying the mutations that cause variation in 
quantitative traits (the QTL). Ideally we should like to 
know the gene in which the mutation occurred (or the gene 
whose regulation is changed by mutations in non-coding 
DNA)  and the specific site that has been mutated causing a 
change in the trait. This has been achieved in some cases 
(eg DGAT, Grisart et al 2004) but they tend to be QTL with 
atypically large effects. In most cases the identified QTL 
explain only a small proportion of the genetic variance in a 
quantitative trait. Nevertheless, it can be expected that with 
better data and more powerful tools we can gradually 
identify QTL of smaller and smaller effect and which 
collectively explain more and more of the genetic variance. 
In this paper we review methods that may help us achieve 
that aim. 

Prior to the availability of “SNP chips” our ability 
to identify QTL was limited by the low density of markers 
that could be used. Usually linkage mapping was used to 

map a QTL but often the confidence interval for its position 
was as large as 50 cM. Then, progressively finer mapping, 
using markers newly discovered in the target region, was 
used to reduce the confidence interval. This fine scale 
mapping relied on linkage disequilibrium (LD) between the 
causal mutation and the markers. Often a biologically 
sensible guess was made as to the relevant gene and 
sequencing carried out to find possible mutations. The 
availability of whole genome sequencing at an affordable 
price should greatly speed up this process because the 
causal mutations should be included in the genome 
sequence data. By using a database of animals with genome 
sequence, it is now possible to impute full genome 
sequence into animals with SNP genotypes and phenotypes 
and carry out an association analysis to find the QTL 
without any preliminary mapping experiments (eg 
Daetwyler et al. 2014). However, it will still be very 
challenging to identify mutations if they cause only a small 
proportion of the variance in a trait, and so it will be 
necessary to use a number of tools and approaches to 
achieve the aim. In this review we divide the approaches 
into statistical analysis of association between 
polymorphisms and phenotype, and use of biological 
information that is external to the association study. Before 
considering these two classes of tool, we discuss the 
advantages of identifying the causal mutations or QTL. 

 
Advantages of Identifying QTL 

Identification of QTL would have benefits in basic 
science and in genomic selection. Our understanding of 
quantitative traits and their evolution would be greatly 
improved if we could study them at the level of causal 
mutations. If we knew the gene underlying a QTL, even if 
not the site of mutation, we would better understand the 
physiology involved and might be able to intervene, for 
instance, using a pharmaceutical. For selection we need to 
know the actual polymorphic site in the genome or at least a 
site in high linkage disequilibrium (LD) with it.  

How much would identification of QTL 
increase the accuracy of genomic selection? Meuwissen 
et al (2001) introduced 3 methods to predict the breeding 
value (BV) of animals from genotypes at a panel of dense 
markers covering the genome. Within a breed, such as 
Holstein cattle, the method they called “BLUP” can predict 
BV with accuracy > 0.8 (Wiggans et al 2011). This appears 
to leave little room for increased accuracy from identifying 
causal mutations. However, no other breed can match the 
quantity and quality of data available to train the prediction 
equation that is available for milk yield in Holstein, so it 
will not be easy for other breeds and species to match this 
accuracy. Even in Holsteins the SNPs explain only 32-80% 
of the genetic variance in a trait (Haile-Mariam et al 2013) 



and this limits the accuracy of genomic EBVs . In addition 
the prediction equations are not robust. For instance, a 
prediction derived from Australian Holsteins has a low 
accuracy when tested in NZ Holsteins (Pryce et al 2012). 
Some traits, such as feed conversion efficiency, are so 
expensive to measure that we need to combine data across 
breeds, so methods that do this would be advantageous. 

An alternative to a within breed prediction 
equation based on medium density markers is a prediction 
combining data from multiple breeds based on dense 
markers and using a Bayesian method such as Bayes R 
(Erbe et al 2012, Kemper et al these proceedings). In 
simulation studies Bayesian methods give higher accuracy 
and greater robustness than BLUP in populations with high 
effective population size (Ne) and use of causal mutations 
further increases accuracy compared to dense markers 
(Meuwissen and Goddard 2010). We tested this in real 
dairy cattle data by comparing BayesR prediction accuracy 
using either HD 800K SNP or a larger set of imputed 
sequence SNP (for a more detailed description see Hayes et 
al, this proceedings). The latter included all predicted non-
synonymous coding SNP because these are more likely to 
be causal mutations (Table 1). We found a consistent 
advantage for fat, protein and milk yield using the imputed 
sequence data. More evidence from real data is needed but 
it seems likely that identification of causal mutations would 
increase accuracy of predicting BV in many situations. 
 
Table 1. Correlations between predicted GEVB and de-
regressed proofs (derived from MACE EBV) using 
either HD 800K SNP or a subset of imputed sequence 
variants (Seq subset).  

SNP set 
Fat 

Yield1 
Prot 

Yield1 
Milk 

Yield1 
800K  52.6% 58.6% 53.3% 
Seq subset  54.2% 60.5% 54.8% 

1Predictions equations were calculated from a combined breed reference 
(Australian Holstein and Jersey) with DTD and were validated in Red 
Holsteins. 

 
Analysis of Association Studies 

Statistical models. Genome wide association 
studies (GWAS) are commonly used for two purposes – to 
map causal mutations and to derive a prediction of BV for 
use in genomic selection. For the former purpose, the data 
are usually analyzed one SNP at a time and the SNPs with 
the strongest association with the trait reported. For the 
latter purpose, all SNPs are fitted in a single prediction 
equation. It would be better to fit all SNPs simultaneously 
regardless of which was the purpose of the experiment. This 
decreases false positives due to population structure and 
increases power. Population structure, such as admixture of 
two different populations, can cause false positives because 
it can cause an association between a marker and a QTL 
even if they are not linked. However, more subtle forms of 
structure, such as half-sib families, also generate more false 
positives than expected (MacLeod et al 2010). To  avoid 
this problem one can fit the effect of the structure (eg by 
fitting a polygenic term described by the pedigree) or one 
can fit markers that adequately cover the whole genome 
simultaneously. This increases power because some of the 

error variance is explained by the other markers so the 
effect of any given marker is estimated with less error 
(Yang et al 2014). 

To fit all SNPs simultaneously they should be 
treated as random effects as they are in the prediction 
equations of genomic selection. The various methods 
suggested for genomic selection vary in the distribution 
they assume for the effects of markers. When analyzing 
sequence data that may contain 30 million polymorphic 
sites, it would be logical to assume a prior distribution in 
which many variants have no effect. Methods called Bayes 
B (Meuwissen et al 2001), Bayes  Cpi (Habier et al 2011), 
Bayes R (Erbe et al 2012) do this but BSLMM fits a small 
effect of all markers as well as larger effects of a few 
markers (Zhou et al 2013). These methods report exactly 
the statistic required for identification of QTL, that is, they 
report the posterior probability conditional on the data that 
a polymorphic site affects the trait. 

A commonly used analysis in human genetics (the 
so-called mixed linear model) fits one SNP as a fixed effect 
and all SNPs as random effects under the BLUP model 
where all their effects are drawn from a normal distribution. 
This model sacrifices some power because the effect of the 
target SNP is fitted twice, once as a fixed effect and once as 
a random effect. (Yu et al 2006 and reviewed by Yang et al 
2014). 

Power to find causal mutations. To detect a QTL 
its effect must be larger than the standard error. This 
demands large sample sizes or QTL of atypically large 
effect. For instance, a typical QTL, that explains 0.001 of 
the phenotypic variance, has a probability of 0.5 to reach a 
p-value of 5*10-8 if the sample size is 30,000. Even with 
such large sample sizes, it is unlikely that the causal 
mutation will be the most significant SNP in the vicinity or 
that it will have the highest posterior probability of 
affecting the trait. Each causal mutation will have many 
SNPs in LD with it. For instance, in Holstein a typical non-
synonymous coding SNP has LD r2 >0.75  with an average 
of ~15 other SNPs spanning ~150Kb. Sampling error in the 
estimated effects of these SNPs will probably cause one of 
them to have a stronger association with the phenotype that 
the causal mutation. Therefore, it is necessary to use other 
sources of information to attempt to isolate the correct 
causal mutation or at least a marker close to it and in near 
complete LD with it. The remainder of the review considers 
such additional sources of information. Even if we do not 
pin point the correct mutation, it would be very useful to 
know the size of the confidence interval in which the QTL 
is located. Fernando (these proceedings) considers this. 

Multiple breed data. The LD between SNPs and 
QTL is decreased when two or more breeds are combined. 
This is a disadvantage if only 50k markers are used (de 
Roos et al 2008) but it is an advantage when using dense 
markers or sequence. Even if the QTL only segregates in 
one breed, the multi-breed data is an advantage because 
markers that segregate in more than one breed can be ruled 
out. Our experience is that some QTL segregate in more 
than one breed and some do not but few segregate in both 
Bos indicus and B. taurus (Bolormaa et al 2013). Raven et 
al (2014) found evidence that only ~15% of milk yield QTL 



were shared between Holstein and Jersey although this was 
also affected by the power of the analysis.  

Multi-trait analysis. QTL often affect more than 
one trait. When separate analyses are carried out for each 
trait the most significant SNP may vary from trait to trait by 
chance. By combining information across traits a multi-trait 
analysis has increased power to identify the QTL 
(Bolormaa et al 2014). 

The ability to detect, map and identify a QTL is 
increased if the QTL explains a large amount of the 
variance of a trait. This suggest that power would be 
increased by including traits that are closer to the direct 
effect of the QTL. However, attempts to exploit this idea, 
for instance by using physiological traits such as hormone 
concentrations, have not often been successful. One 
particularly useful trait is gene expression, that is the 
concentration of mRNA for a particular gene in the cells of 
a given tissue. QTL for gene expression (eQTL) fall into 
two groups – cis eQTL are mutations that affect expression 
of the gene on the same DNA molecule or chromosome and 
trans eQTL affect expression of both copies of the gene. In 
practice, any eQTL that maps near to the gene is called a cis 
eQTL. Cis eQTL often explain a large part of the variance 
in gene expression (Visscher et al 2012)  and so we have 
higher power to map and identify them than is the case with 
most QTL. Cis eQTL have two other advantages – they 
immediately identify the gene involved and they show 
allele specific expression. Allele specific expression means 
that one of the two alleles of a gene is expressed more 
highly than the other. This can be detected by RNA 
sequencing. This is a very sensitive measure of an eQTL 
because it is a within-animal comparison in which most 
variables that affect expression are held constant. If an 
eQTL is found it does not prove that the same mutation also 
causes variation in a conventional phenotype. Evidence for 
this is that the two traits (gene expression and conventional 
phenotype) segregate together. 

 
Use of Biological information  

There is usually some information outside the 
association study that would help in deciding which 
polymorphic sites affect the trait as opposed to being 
associated with the trait due to LD. This outside 
information might be about the probability that a particular 
gene affects the trait or the probability that a particular site 
in the genome affects the trait. If the information about 
eQTL discussed above was external to the association study 
it would fall in this category and could contain information 
about both the gene and, possibly, the specific site. 

Physiological knowledge of a trait may indicate 
that some genes are more likely than others to affect the 
phenotype. This information might be used before the 
experiment is carried out in a candidate gene approach. 
Alternatively, the genes in the confidence interval of a QTL 
may be considered and prioritized based on their known 
involvement with the trait. Unfortunately, a case can be 
made for almost any gene influencing any trait so such post 
hoc arguments are not always convincing. Another 
approach is to list all the genes within the confidence 
interval of any QTL throughout the genome and ask which 
pathways are over represented in the list (Weng et al 2011).  

Instead of focusing on known candidate genes, one 
could focus on ‘candidate sites’. For instance, one could 
examine the effect on phenotype of all mutations that 
generate a premature stop codon. This is an example of 
“reverse genetics” in which one progresses from the 
mutation to the phenotype instead of the conventional path 
of starting with an inherited phenotype and looking for the 
mutations that causes it. 

Some sites in some genes are more likely to affect 
phenotype if mutated than others. Typically sites that 
change an amino acid in a protein (non-synonymous coding 
sites) are thought to have more affect than synonymous 
sites or non-coding sites. However, although many 
Mendelian mutations with a large effect are coding 
mutations, many QTL appear to be non-coding mutations. 
In human genetics the ENCODE project identified many 
sites in the genome outside gene coding regions that may be 
functional and hence display a phenotype if mutated 
(Djebali et al 2012). For instance, these sites include 
transcription factor binding sites and sites with histone 
marks indicating “open” chromatin. It would be very 
valuable to have a catalogue of eQTL and other sites in 
livestock genomes that appear to be functional.  

Another indicator of a site where mutation will 
generate a phenotypic effect is the conservation of the site 
across species. About 5% of the genome is conserved 
across mammals suggesting that mutations in these regions 
would be detrimental. However, Kindt et al (2013) and 
Koufariotis et al (2014) did not find conserved sites 
enriched for QTL for human and bovine traits respectively.  

It is desirable to integrate outside biological 
knowledge into the framework of the association study so 
that more objective decisions can be made about the 
probability that a particular mutation affects the trait. One 
way to do this is to define categories of sites and to estimate 
the proportion of sites in each category that affect the trait. 
We use a variant of Bayes R called Bayes RC to do this 
(MacLeod et al, these proceedings). For instance, sites 
might be classified into 2 categories (non-synonymous and 
others) and the proportion of sites that affect a trait 
estimated in each category. This uses the known 
categorization of sites without any prejudice about which 
categories are important to a particular trait.  

 
Evidence of selection 

Long term selection changes allele frequency at a 
selected site and at neighboring sites. Thus comparing 
populations subject to different past selection pressures 
might help identify genome sites that affect the selected 
traits. The power of this approach is reduced by linkage and 
by drift in gene frequencies due to finite population size 
(Kemper et al 2014). 

One generation of selection can affect genotype 
frequencies if it is very strong. For instance, a mutation that 
is a recessive in utero lethal will lead to offspring whose 
genotype frequencies depart from Hardy-Weinberg 
equilibrium due to the missing homozygote class. This has 
been used to identify mutations causing in utero mortality 
(Van Raden et al 2011). 

 



Some examples 
Using 16,000 Jersey and Holstein bulls and cows 

(dataset 1) with phenotypic or progeny test records for milk 
production traits (DTD), we carried out a GWAS using 
Illumina high density or 800k SNPs which were either 
genotyped or imputed from lower density SNP genotypes. 
The single SNP regression results for milk on chromosome 
6 are shown in Figure 1 as well as a BayesR analysis of the 
same data.  There is a small peak around 87 Mb where the 
casein cluster is located but this extends across to a larger 
peak at ~89 Mb. The Bayes R analysis shows these as 2 
clearly separate peaks: one above the casein gene cluster 
(red bar) and one close to the GC gene (purple bar). Using 
the ‘1000 bull genomes’ database we imputed all SNPs 
within 2 kb of genes and carried out a new Bayes R analysis 
(Figure 2). This analyses was carried out in a set of 8000 
Holstein and Jersey bulls (dataset 2). The Bayes R analysis 
with sequence gives a high and almost equal posterior 
probability for 2 SNP at ~ 89 Mb while the casein cluster 
shows a smaller peak with several SNP  all showing similar 
posterior probabilities. 
 
 

 
Figure 1. Comparison of results from a GWAS 800K 
analyses for Milk Yield and a BayesR analyses using the 
same data. The red bar shows the casein gene cluster 
and the purple bar the GC gene. 
 
 

 
Figure 2. Posterior probabilities for BayesR analysis of 
Milk Yield using imputed sequence in the same region 
of BTA6 as shown in Figure 1. 

 
Vander Jagt (2012) analyzed a series of microarray 

experiments on gene expression in the mammary gland of 
lactating cows. She listed all genes that were differentially 
expressed in two or more experiments. The SNPs in or 
within 50 kb of these genes were identified in the genome 
sequence data. Using this independent biological 
information we carried out a further analysis of dataset 2 
using the Bayes RC method, described briefly above. The 
SNPs were classified into three groups; (1) non-
synonymous SNPs in genes listed by Vander Jagt (2012), 
(2) other SNPs in or near these genes, (3) all other SNPs. 
Bayes RC estimates the proportion of SNPs with non-zero 
effects on milk yield separately for each of the 3 groups. 
We found A higher proportion of  non-zero effects in group 
1. The analysis also reports the posterior probability that 
each SNP has an effect on milk yield (Figure 3, 
Lact_BayesRC). This shows that there is a non-
synonymous SNP in beta casein (CSN2) with a posterior 
probability of 0.35 of affecting milk yield (higher than for 
the Bayes R analysis, Figure 2) and a group 2 SNP (non-
coding near a differentially expressed gene) with the 
highest  posterior probability in this region of 0.8. This 
second SNP is at 88.741762 Mb, 2564 bp upstream from 
the gene GC located at 88.69 – 88.74 Mb. Bayes R, without 
the biological grouping of SNPs, does detect this SNP but 
with a low posterior probability of affecting milk yield due 
to very high LD between many SNP in this region. The 
SNP segregates in Holsteins (MAF = 0.42) but is almost 
fixed in jerseys (MAF=0.004) which is in accord with the 
detection of the QTL only in Holsteins. 

 
 
Figure 3. Posterior probabilities for BayesRC analysis of 
Milk Yield (Lact_BayesRC) with imputed sequence in 
the same region of BTA6 as shown in Figure 1 and 2. 
Prior to analysis the SNP were assigned to 3 different 
classes based on lactation biology and genome 
information. 

 
We also carried out a GWAS using data on 

average milk yield and average allele frequencies from 12 
different cattle breeds (dairy and beef). Twenty two SNPs 
near GC (from 88.728 – 88.751 Mb) were significantly 
associated with milk yield (p<0.001). The most significant 
SNP (p< 0.00001) is at 88.743767 Mb, less than 2 kb from 
the high posterior probability SNP of Bayes RC.  

The GC gene (Group-specific Component, 
Chr6:88695939..88739180) encodes the vitamin D binding 
protein (VDB), the main transporter of vitamin D in 
plasma. It is expressed mainly in liver (Haddad, 1979) but 



also in other tissues. Vander Jagt (2012) found that in 
mammary gland, GC mRNA levels are up-regulated 1.5 
fold in cows treated with growth hormone and down 
regulated ~1.6 fold in an in vitro experiment when cells 
were grown on ECM compared to plastic with no prolactin 
in the media in both cases.  

Further evidence for a possible role for vitamin D 
and its carrier protein encoded by GC in regulating milk 
yield come from our understanding of vitamin D 
metabolism and its role in the mammary gland. Via the 
plasma, VDB carries the sterol vitamin D3 from its site of 
synthesis in the skin to the liver, its 25(OH)D3 derivative 
from the liver to the kidney and finally the active form, 
1,25(OH)2D3, from the kidney to various other tissues  
(reviewed by Omdahl et al, 2002). One of the target tissues 
is the mammary gland. In tissue culture 1,25(OH)2D3, via 
the vitamin D receptor, restricts growth and differentiation 
of mammary epithelial cells (Zinser et al 2002; Zinser & 
Walsh, 2004; Kemmis et al, 2006). Milk production 
depends on the number and activity of these cells. Raven et 
al (2014) also found that a SNP in the gene for vitamin D 
receptor (Chr5:32550521..32606144) was associated with 
milk yield. 
 

 
Figure 4.  Variance explained by 250 kb windows on 
chromosome 26 for fat yield. * mark the position of 
genes SCD and BTRC. The vertical scale is the variance 
explained by each window relative to the mean of all 
windows. 

 
Kemper et al (these proceedings) used Bayes R 

analysis of milk production traits to distinguish 2 QTL on 
chromosome 26 between 21 and 22.5 Mb. They calculated 
the variance in GEBV for fat yield for 250 kb windows 
based on BayesR estimates of SNP effects (dataset 1). One 
QTL is near the gene stearoyl co-enzyme A desaturase 
(SCD) and one near FGF8 and BTRC (Figure 4). Figure 5 
shows the posterior probabilities for individual SNPs in 
imputed sequence data (dataset 1). No single SNP near 
BTRC has a high posterior probability of affecting fat yield 
because many SNPs all have a low probability indicating 
that the analysis could not distinguish which of them was 
causal. Near SCD in the BayesR  analysis of the 800k SNP 

data there is a  single SNP with posterior probability of 
0.49. However, in the sequence data no single SNP reaches 
this probability because the analysis cannot distinguish 
among the many SNPs in high LD (Seq_BayesR). 
However, in the Bayes RC analysis (Seq_BayesRC, details 
in MacLeod et al. these proceedings) a non-synonymous 
coding SNP in SCD has a posterior probability of 0.6. The 
SCD mutation is segregating in both Holstein (MAF 0.3) 
and in Jersey (MAF 0.2). SCD plays an important role in 
fatty acid desaturation and this same SCD mutation was 
shown to be associated with fatty acid composition in 
Holstein milk (Mele et al 2007). Also Rincon et al (2012) 
identified another synonymous SNP associated with fatty 
acid composition in complete LD with this one.   

 
Figure 5. Posterior probabilities for 800K BayesR 
analysis, contrasted with imputed sequence BayesR and 
BayesRC analyses for fat yield. In BayesRC analysis 
prior knowledge of the variant type was used to assign 
SNP to 3 classes. The arrow highlights a SNP in the SCD 
gene. 

 
These examples illustrate two statistics derived 

from BayesR analyses – the variance explained by a 
window and the posterior probability that individual SNPs 
affect the trait. Both are useful. The window variance may 
detect a QTL more easily than posterior probabilities 
because the no single SNP may have a high probability. 
However, a high posterior probability when all sequence 
variants have been included in the model, is evidence that 
the causal mutation or one in very high LD with the causal 
mutation has been found. 

 
Conclusion 

There would be advantages to basic science and to 
selection of livestock if mutations causing variation in 
quantitative traits could be identified. However, most of the 
variance in quantitative traits is caused by numerous 
mutations each of small effect. To find at least the more 
important of these, we advocate analysis of multiple traits 
and genome sequence data on large samples from multiple 



breeds using Bayesian models that fit all sequence variants 
simultaneously. Despite the power of such a design, due to 
LD there will still be many polymorphisms that could be 
the cause of each QTL. To discriminate between these, 
biological information about the possible genes and 
genomic sites  can be used but we advocate an objective 
method of incorporating this information. We illustrated 
these recommendations by identifying SNPs near the gene 
for vitamin D binding protein as affecting milk yield 
possibly through regulation of the expression of this gene 
(GC). 
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