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ABSTRACT: Bayesian genomic prediction methods, 
commonly used for genomic selection in livestock, are 
potentially a powerful tool for QTL discovery. However 
these methods become more computationally challenging as 
we move from HD SNP to sequence variants. We discuss 
results from a modified BayesR analysis in which 800K 
genotypes and subsets of imputed sequence variants were 
allocated to specific classes based on biological information 
prior to starting the analysis. The analysis determines if 
there is enrichment for QTL effects by allowing the 
distribution of SNP effects to vary between classes. We 
analysed milk traits from a mixed group of Holstein and 
Jersey bulls. Using examples of mutations in genes 
previously associated with milk traits, we demonstrate that 
this modified Bayesian analysis may provide a powerful 
approach for short-listing potential causal variants. 
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Introduction 
Bayesian methods such as BayesR (Erbe et al. 

2012) are often used as a tool for genomic selection of 
livestock based on SNP genotypes. However, these 
methods can also be used as a tool for QTL discovery. 
BayesR for example, simultaneously predicts genome-wide 
SNP effects and calculates a posterior probability for each 
SNP indicating the likelihood that it has a real effect on the 
trait. Potential advantages of Bayesian approaches over 
other QTL mapping methods, such as single marker 
regression commonly used in GWAS are: they fit all SNP 
simultaneously in a single model, they allow for a flexible 
distribution of SNP effects so that many SNP have a very 
small or zero effect while others have a large effect.  A new 
feature of these Bayesian models is introduced in this paper, 
that is, the possibility of utilising biological information in 
the model priors.  

In dairy cattle breeds such as Jersey and Holstein, 
the long range linkage disequilibrium (LD) is high which 
means that quite a number of SNP may show a strong 
association with a QTL. Although Bayesian methods are 
better able to deal with this than GWAS, by fitting all SNP 
simultaneously, this issue will increase as we move from 
HD SNP to sequence data.  

In this study we introduce a modified BayesR 
method, BayesRC, which we developed to take advantage 
of biological knowledge that is available a priori on 
sequence variants. We compare BayesR and BayesRC 
methods for QTL discovery in dairy cattle data, using both 
HD 800K SNP genotypes as well as subsets of imputed 
sequence data. We combined data from Jersey and Holstein 

cattle in an effort to reduce the number of SNP tagging each 
QTL. 

 
Materials and Methods 

Genotype Data. We obtained either real or 
imputed 800K HD SNP data (Illumina) for  6920 Holstein 
bulls and 1108 Jersey bulls. For this study we identified 
three subsets of genome-wide sequence variants. The first 
was a set of variants in regions predicted to have a 
potentially regulatory role (REG), such miRNA variants 
and regions just up or down-stream of genes. The second 
was all non-synonymous coding (NSCoding) variants (i.e. 
DNA base pair modifications that change an amino acid in 
the protein code) and the third was all 800K SNP not 
included in REG or NScoding sets. The first two subsets of 
sequence variants were imputed for all 8028 bulls using 
sequences from the 1000 Bull Genomes Consortium 
(http://www.1000bullgenomes.com/). Here we refer to the 
three sets of variants as REG, NSCoding and 800K, while 
all three sets combined are referred to as SEQ. In the SEQ 
data if a pair of variants were in perfect LD (r2>0.99) then 
one of the pair was removed, and all monomorphic variants 
were discarded. In total 994,019 variants remained, of 
which 45,026 were NSCoding, 587,734 REG and  387,170 
800K. 

Milk trait records. We calculated de-regressed 
proofs for all bulls in the study from their international 
MACE dairy bull breeding values. Traits included milk, fat 
and protein yield (Milk, Fat & Protein). 

BayesR and BayesRC Statistical methods. 
BayesR methodology was implemented here as detailed in 
(Erbe et al. 2012) except that we included a correction for 
breed as a fixed effect in the model. Bayes R assumes that 
the effects of SNP are drawn from a mixture of normal 
distributions each with a mean of zero and variance of: (i) 
zero, (ii) 0.0001𝜎g, (iii) 0.001𝜎g or (iv) 0.01𝜎g, where 𝜎g is 
the additive genetic variance of the trait. The analysis 
estimates the proportion of SNP that fall into each of these 
classes. The methodology for BayesRC is the same as 
BayesR except that, a priori, each SNP (variant) is 
identified as belonging to a specific “class” (2 or more) and  
the proportion of SNP that belong to each of the four 
normal distributions can vary between classes. Therefore 
the class to which a SNP belongs can affect the posterior 
probability that it has a non-zero effect. Consequently, SNP 
that belong to a class that on average has a large effect on a 
trait, are more likely to be included in the model than SNP 
that belong to a class that rarely has an effect on the trait. 

Class allocation was based on the predicted 
genomic properties of sequence data (REG or NSCoding) 



as well as on lactation biology. For the latter, we defined a 
set of 792 genes which were differentially expressed in the 
mammary gland in response to treatments that altered milk 
yield, from an independent study (Vander Jagt 2012). All 
variants in our genotypes that were in or within 50Kb of 
these genes were defined as “Lact”. 

We carried out four different analyses: 
1. BayesR 800K: BayesR using only 800K SNP data.  
2. BayesR_SEQ: BayesR using all SEQ variants. 
3. BayesRC_SEQ: BayesRC using SEQ variants: class I = 

NSCoding, class II = REG, class III = 800K i.e. all 
other SNP in SEQ.  

4. BayesRC_Lact: BayesRC using SEQ variants: class I = 
all NSCoding variants that were located in the Lact 
genes, classII = all REG and 800K variants in Lact 
genes, class III = all other SEQ variants outside the 
Lact set.  

 
Results and Discussion 

SEQ variants. We calculated the frequency of 
variants in each of the 3 sets, and found that more that 50% 
of the NSCoding variants had a minor allele frequency 
(MAF) of ≤ 0.1, while the majority of 800K SNP  had MAF 
>0.1 (Fig. 1). The likely explanation for this large 
difference is that 800K SNP are chosen to have MAF>0.1 
while NSCoding variants often cause strongly deleterious 
effects on fitness traits and therefore are selected to low 
frequency. This suggests that LD will often be low between 
these potential causal mutations and the 800K SNP because 
the latter are specifically chosen for their high MAF. 
Assuming a QTL with MAF = 0.05, then to achieve a 
minimum r2 of 0.5 between a SNP this QTL, the SNP allele 
frequency must be ≤ 0.1 (Wray 2005). 

 

 
Figure 1. MAF distribution among the different subsets of variants used in 

the analysis. 
 

In this case it is expected that it will be difficult to 
detected the effect of low frequency causal mutations on a 
polygenic trait unless the actual mutation is present in the 
data. By including all imputed NSCoding variants in the 
analyses we hoped this set would be enriched for causal 
variants affecting milk traits.  

The REG set included all variants in 2Kb regions up 
and down-stream of known genes so, although there would 
undoubtedly be some causal variants present, a large 
proportion of our REG variants will have no effect on any 

trait. Therefore it follows that their MAF distribution is less 
extreme than the NSCoding variants. 

QTL Discovery.  Figure 2 shows the results for 
QTL analysis in the well-known DGAT1 region of 
chromosome 14.  We compare the results for Milk with 4 
different analyses: 800K_BayesR, Lact_bayesR, 
Seq_BayesR and Seq_BayesRC. The previously identified 
DGAT1 NSCoding causal mutation was not present among 
the 800K SNP but there was a single SNP in strong LD 
with the DGAT1 mutation and which was included in the 
model every iteration (that is, it had a posterior probability 
of 1 of affecting milk yield). There is a scatter of other SNP 
close by that also show moderate posterior probabilities 
indicating that the 800K SNP did not capture all of the 
variance. DGAT1 was included in the Lact gene set and 
therefore the DGAT1 causal mutation was assigned to Class 
I variants in the Lact_BayesRC analysis. This analysis 
clearly “discovers” the causal mutation with a posterior 
probability of 1. The BayesR_Seq analysis does not use any 
prior biological information and was not able to distinguish 
the causal DGAT1 mutation from among a number of other 
SNP around the DGAT1 gene that were in moderate to high 
LD with the causal mutation. 
 

 
Figure 2. Posterior probabilities for a range of BayesR and BayesRC 

analyses of Milk Yield on a region of chromosome 14 highlighting 
the known DGAT mutation (arrow). 

 
The fourth analysis shown in Fig. 2 is 

Seq_BayesRC for which the DGAT1 mutation was also in 
Class I. However in this case the posterior probability for 
the mutation is lower than the Lact_BayesRC. The likely 
explanation is that Class I variants in the Lact_BayesRC 
were more enriched for causal variants than Class I in the 
Seq_BayesRC (Table 1). The latter included all known 
NSCoding variants, many of which did not affect milk 
traits. In Lact_BayesRC, because Class I are more enriched 
for SNP affecting milk production, a higher proportion of 
SNP in this class are estimated to belong in the non-zero 
distributions (Table 1).  

For Milk yield we found that the proportion of 
SNP in the non-zero distribution was enriched for 
Lact_BayesRC and relative to their small number, they 
explained a greater proportion of the genetic variance of the 
trait (Table 1). However, because there are so many SNP in 
Class III, these SNP still explained most of the total genetic 
variance of the trait. In Seq_BayesRC there was less 
enrichment for causal variants than Lact_BayesRC in Class 
I which comprised only NSCoding, because this allocation 



ignored any trait specific biology (although there was still 
some increase in per SNP variance).  

 
Table 1. Statistics for variants in each class for the 
Lact_BayesRC and Seq_BayesRC analyses.  

Analysis Statistic Class 
I 

Class 
II 

Class 
III 

Lact No. of SNP 4650 64518 924851 

Lact % SNP in  
non-zero dist 4 1.3 0.8 

Lact % genetic var 
explained 4 13 85 

Seq No. of SNP 45026 578734 370259 

Seq % SNP in  
non-zero dist. 0.8 0.7 1.1 

Seq % genetic var 
explained 6 40 55 

 

 
Figure 3. Posterior probabilities for BayesR and BayesRC analyses of 

Protein on a region of chromosome 11, indicating a NSCoding 
mutation in the PAEP gene previously associated with protein traits. 

 
Fig. 3 shows the region on Chromosome 11 

around the PAEP gene (alias β lactoglobulin). This gene 
codes for one of the main whey proteins in cows’ milk. The 
highlighted NSCoding SNP in Fig. 3 was previously 
identified as associated with protein traits (Braunschweig & 
Leeb 2006), although this SNP may not be the causal 
mutation. Like DGAT1, this gene was included in the Lact 
gene set and again it was the Lact_BayesRC analysis which 
most clearly identified this mutation. The Seq_BayesRC 
analysis also identifies this mutation but with a lower 
posterior probability than the Lact_BayesRC. It is of 
interest to note that while Seq_BayesR struggled to 
distinguish any one SNP over others in this PAEP gene 
region, the 800K_BayesR shows a much higher posterior 
probability for a SNP in very close proximity to PAEP 
(1636 bp). The reason for this is that in the 800K data there 
were very few SNP in moderate to high LD with the 
NSCoding PAEP mutation while in the SEQ data there 
were over 100 SNP in high LD (r2>0.75) with the mutation. 
Therefore the Seq_BayesR analysis did not have any means 
of distinguishing well among these SNP in high LD. This 
highlights a dilemma of using sequence data because high 
LD among very dense variants will sometimes “water-
down” the effect of a single causal mutation even when it is 
present in the data if LD is very high between the QTL and 
many other SNP in the same region. However the results 
from the BayesRC analysis demonstrate that good a priori 

biological information can help to overcome this problem 
when the some classes of SNP are enriched for causal 
mutations.  

Our final example in Figure 4 is a NSCoding 
variant in the SMEK1 gene, which has not been directly 
linked to milk traits before but is implicated in energy 
metabolism and the Insulin/IGF pathway (Yoon et al 2010). 
SMEK1 was not included in the Lact set, so the NSCoding 
variant was assigned to Class III in the Lact_BayesRC 
analysis. None the less this variant shows a high posterior 
probability as well as a REG SNP (also class III) close by. 
As would be expected, the highest probability for this SNP 
is in the Seq_BayesRC where it was assigned to Class I. 
The 800K_BayesR did not detect any signal in or near this 
gene, probably because this NSCoding SNP is at a MAF of  
< 0.01 and is only segregating in the Holsteins.  
 

 
Figure 4. Posterior probabilities for BayesR and BayesRC analyses over a 
region of chromosome 21, indicating a NSCoding SNP in the SMEK1 
gene associated with milk yield. 

 
Conclusion 

We expect that the performance of BayesRC 
would improve if we were able to define a small class or 
classes that contained a larger proportion of causal variants 
or SNP in high LD with QTL. Generally however, the 
BayesRC method shows potential for QTL discovery 
among sequence variants. 
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