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ABSTRACT: The transition from GWAS chip to 
sequencing data with increasingly larger sample sizes has 
many ramifications for efforts to conduct genomic 
prediction and genome wide association studies.  First, as 
data sets grow larger, it is of interest to consider methods 
whose running time is linear in the data size.  Second, it can 
be beneficial to model non-infinitesimal genetic 
architectures whose distribution of effect sizes is different 
from Gaussian, including minor allele frequency (MAF) 
dependent architectures.  Third, although the fact that 
mixed model association can be viewed as a test for 
association on phenotypic residuals of BLUP predictions 
motivates a generalization to phenotypic residuals of 
predictions based on non-infinitesimal genetic architectures, 
this will require new approaches to calibration of test 
statistics.  In this invited talk, we review recently published 
work in all of these research directions. 
Keywords: prediction; genome wide association; sequence 
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Introduction 
Genomic prediction and genome wide association 

in humans have had substantial success in studies based on 
GWAS chip data (Visscher et al. (2012), Chatterjee et al. 
(2013)). However, as the costs of generating sequencing 
data decrease, GWAS chip studies will increasingly be 
replaced by whole-genome sequencing studies (The 1000 
Genomes Project Consortium (2012), Pasaniuc et al. 
(2012)).  Here, we highlight some of the issues related to 
this transition.  

First, many widely used approaches for conducting 
genomic prediction and genome wide association using 
mixed model methods have running time O(MN2), where M 
is the number of markers and N is the number of samples 
(de los Campos et al. (2010), Yang et al. (2014)).  However, 
as both M and N grow large, this running time may become 
computationally intractable, motivating the development of 
methods whose running time is only O(MN), or linear in the 
data size.    

Second, it can be beneficial to model non-
infinitesimal genetic architectures whose distribution of 
effect sizes is different from Gaussian (Meuwissen et al. 
(2001), de los Campos et al. (2010)).  Of particular interest 
to sequencing data, which includes a large number of rare 
variants, are genetic architectures in which the variance 
explained by a SNP depends on the MAF of that SNP 
(Speed et al. (2012), Lee et al. (2013)).   

Third, standard mixed model association methods 
can be viewed as a test for association on phenotypic 
residuals of Best Linear Unbiased Predictions (BLUP) 
(Svishcheva et al. (2012)).  This motivates the development 
of tests for association on phenotypic residuals of 
generalizations of BLUP predictions that model non-

infinitesimal genetic architectures (Bolormaa et al. (2013)).  
However, if the goal is to produce calibrated test statistics 
that follow a specified null distribution, new approaches to 
calibration are needed, as the calibration approach of 
standard mixed model association methods does not 
generalize.   
 

Materials and Methods 
Genomic prediction. Let M be the number of 

markers and let N be the number of training samples.  Let X 
be an M x N matrix of training sample genotypes, 
normalized to mean 0 and variance 1 for each SNP.  The 
genetic relationship matrix (GRM) of training samples is 
defined as A = XTX/M.  (The GRM can also be defined 
using pedigree relationships in data sets of related samples 
with known pedigrees (Henderson (1975)), but here we 
only consider the GRM defined from genetic data.)  The 
heritability explained by genotyped SNPs (hg

2) can be 
defined in the population as the maximum proportion of 
phenotypic variance that can be explained by a linear 
combination of genotyped SNPs, and can be estimated from 
the training samples by using restricted maximum 
likelihood (REML) to fit the phenotypic covariance matrix 
V = σg

2A + σe
2I to the observed phenotypes Y and setting 

hg
2 = σg

2/(σg
2+ σe

2) (Yang et al. (2010)).  The BLUP 
prediction of genetic values of training samples is YBLUP = 
hg

2AV-1Y (or equivalently YBLUP = hg
2(XTX/M)V-1Y), and 

the BLUP prediction for a set of validation samples is 
Y*BLUP = hg

2(X*TX/M)V-1Y, where X* is an M x N* matrix 
of normalized genotypes in N* validation samples (de los 
Campos et al. (2010)). 

Mixed model association. Let V = σg
2A + σe

2I and  
Y denote observed phenotypes as above.  Let Xm denote an 
M x 1 vector of normalized genotypes at candidate SNP m.  
The standard mixed model association test is to compute a 
χ2 statistic t2 = (Xm

TV-1Y)2/(Xm
TV-1Xm) (Yang et al. (2014)).     

The numerator of t2 is proportional to (Xm
T(Y – YBLUP))2, 

since Y – YBLUP = Y – hg
2AV-1Y = Y – (V – (1 – hg

2)I)V-1Y 
= (1 – hg

2) V-1Y, and the denominator of t2 is approximately 
constant (Svishcheva et al. (2012)).  Thus, the mixed model 
association test can be viewed as an association test on the 
BLUP residual Y – YBLUP, although this is contingent on 
appropriate calibration (Svishcheva et al. (2012)). 

 
Results and Discussion 

Running Time. Direct solution of the mixed 
model equations requires O(MN2) time to compute the 
GRM and O(N3) time to invert the phenotypic covariance 
matrix.  However, iterative methods circumvent the need to 
directly solve the mixed model equations. Iterative methods 
have been applied to pedigree-based mixed model analysis 
since the 1980s (Schaeffer and Kennedy (1986), Misztal 
and Gianola (1987), Berger et al. (1989)) and have recently 



been extended to SNP-based mixed model analysis, 
yielding O(MN) time algorithms for BLUP prediction 
(Legarra and Misztal (2008), VanRaden (2008)) (Table 1).  
These methods apply various iterative linear algebra 
approaches (e.g., Gauss-Seidel iteration, Jacobi iteration, or 
preconditioned conjugate gradients) requiring only an 
O(MN) time matrix-vector multiplication at each iteration.  
Convergence typically occurs within a few dozen iterations. 
 
Table 1. Published methods for genomic prediction with 
running time O(MN). 

Reference  Approach  Effect size prior 
Legarra and 
Misztal (2008)  GS  Normal 

VanRaden (2008)  J              Normal 
Meuwissen et al. 
(2009)  VB / ICE  Zero-exponential mix 

Logsdon et al. 
(2010)  VB / ICE  Zero-trunc. normal 

mix 
Carbonetto and 
Stephens (2012)  VB / ICE  Zero-normal mix 

Logsdon et al. 
(2012)  VB / ICE  Zero-improper mix 

GS: Gauss-Seidel iteration. J: Jacobi iteration. VB: Variational Bayes. 
ICE: Iterated conditional expectation. 

 
Non-infinitesimal genetic architectures. BLUP 

methods are based on an infinitesimal (Gaussian) genetic 
architecture, but Meuwissen et al. (2001) proposed a 
Bayesian approach that assigns a non-infinitesimal prior 
distribution to additive SNP effects and obtains posterior 
estimates using Markov chain Monte Carlo (MCMC).  In 
the past decade, numerous extensions of this approach have 
been developed (Erbe et al. (2012), Zhou et al. (2013), 
Gianola (2013)).  In addition, recent progress has included 
fast methods that obtain approximate posterior estimates in 
O(MN) time (Table 1).  These methods modify the update 
step used in the O(MN) time Gauss-Seidel infinitesimal 
mixed model approach (Legarra and Misztal (2008)) by 
iteratively updating each SNP effect with its conditional 
posterior mean, an approach that is variously described as 
“iterated conditional expectation” (Meuwissen et al. (2009)) 
or “variational Bayes” (Logsdon et al. (2010), Carbonetto 
and Stephens (2012), Logsdon et al. (2012)).  The methods 
use similar computational approaches but differ in their 
assumed priors, methods of estimating hyperparameters, 
and approaches to model selection or averaging. 

The shift from GWAS chip to sequencing data has 
the potentially to substantially improve prediction accuracy, 
due to rare causal variants not tagged by common SNPs 
(Meuwissen and Goddard (2010), Yang et al. (2010)).  
However, both the magnitude of the available improvement 
and the methods for capturing this improvement will 
depend on the relationship between the variance explained 
by a SNP and the MAF of that SNP (Speed et al. (2012), 
Lee et al. (2013)), which is a function of the strength of 
negative selection (against new mutations) on the trait 
(Agarwala et al. (2013)).  Strong negative selection is 
required in order for the variance explained to be 
independent of the MAF p (a common model assumption), 
but in the absence of selection the variance explained will 

be proportional to p(1−p).  In the latter case, rare variants 
may not explain the gap between the heritability explained 
by genotyped SNPs in GWAS chip data (hg

2) and the total 
narrow-sense heritability (h2), and other explanations may 
be required (Zuk et al. (2012), Zaitlen et al. (2013)). 

Generalizing mixed model association. The 
standard mixed model association test can be viewed as an 
association test on the BLUP residual Y – YBLUP, as 
described above.  The development of Bayesian methods 
that model non-infinitesimal genetic architectures to 
compute a prediction with increased accuracy (YBAYES) 
raises the question of whether association tests based on the 
residual Y – YBAYES may achieve higher power.  Indeed, 
Bolormaa et al. (2013) showed that the resulting effect sizes 
are likely to be more precise, although they did not explore 
the question of calibration of test statistics.  Logsdon et al. 
(2012) proposed a test statistic heuristically calibrated to the 
data, analogous to genomic control (Devlin and Roeder 
(1999)), but recent work has shown that genomic control is 
not an appropriate form of calibration at large sample sizes 
because test statistics are expected to be inflated by true 
polygenic signal (Yang et al. (2011), Yang et al. (2014)).  
Thus, the question of calibration of a test statistic based on 
Y – YBAYES is currently unresolved.  One promising 
direction of research involves a method of calibration that 
takes advantage of the relationship between test statistics 
and linkage disequilibrium (Bulik-Sullivan et al. (2014)), 
but the question of whether that approach will provide an 
appropriate calibration to mixed model association statistics 
and their extensions remains an open question. 
 

Conclusion 
In this review, we have highlighted the appeal of 

O(MN) methods for BLUP and its extensions, while raising 
two unanswered questions.  The first question involves the 
relationship between variance explained and MAF, which 
will vary across traits and can only be resolved empirically.  
The second question involves calibration of mixed model 
association statistics and their extensions, which is an 
important avenue for future work. 
 

Acknowledgments 
We are grateful to B. Vilhjalmsson, N. Patterson, B. Bulik-
Sullivan, H. Finucane and B. Neale for helpful discussions.  
This work was funded by NIH grants R01 HG006399 and 
R01 MH101244. 

 
Literature Cited 

Agarwala, V., Flannick, J., Sunyaev, S. et al. (2013). Nat 
Genet. 45:1418-1427. 

Berger, P., Luecke, G., and Hoekstra, J. (1989). J. Dairy 
Sci. 72:514-522. 

Bolormaa, S., Pryce, J. E., Kemper, K. et al. (2013). J. 
Anim. Sci. 91:3088-3104. 

Bulik-Sullivan, B. K., Loh, P., Finucane, H. et al. (2014). 
http://biorxiv.org/content/early/2014/02/21/002931.  
Accessed on Feb. 26, 2014. 

Carbonetto, P., and Stephens, M. (2012). Bayesian Anal. 
7(1):73-108. 

Chatterjee, N., Wheller, B., Sampson, J. et al. (2013). Nat. 
Genet. 45:400-405. 



de los Campos, G., Gianola, D., and Allison, D. B. (2010). 
Nat. Rev. Genet. 11:880-886. 

Devlin, B., and Roeder, K. (1999). Biometrics 55:997-1004. 
Erbe, M., Hayes, B. J., Matukumalli, L. K. et al. (2012). J. 

Dairy Sci. 95:4114-4129. 
Gianola, D. (2013). Genetics 194:573-596. 
Henderson, C. R. (1975). Biometrics 31:423-447. 
Lee, S. H., Yang, J., Chen., G. B. et al. (2013). Am. J. Hum. 

Genet. 93:1151-1155. 
Legarra, A., and Misztal, I. (2008). J. Dairy Sci. 91:360-

366. 
Logsdon, B. A., Hoffman, G. E., and Mezey, J. G. (2010). 

BMC Bioinfo. 11:58. 
Logsdon, B. A., Carty, C. L., Reiner, A. P. et al. (2012). 

Bioinformatics 38:1738-1744. 
Meuwissen, T. H. E., Hayes, B. J., and Goddard, M. E. 

(2001). Genetics 157:1819-1829. 
Meuwissen, T. H. E., Solberg, T. R., Shepherd, R. et al. 

(2009). Genet. Sel. Evol. 41(2):1-10. 
Meuwissen, T., and Goddard, M. (2010). Genetics 185:623-

631. 
Misztal, I., and Gianola, D. (1987). J. Dairy Sci. 70:716-

723. 
Pasaniuc, B., Rohland, N., McLaren, P. J. et al. (2012). Nat. 

Genet. 44:631-635. 

Schaeffer, L. R., and Kennedy, B. W. (1986). J. Dairy Sci. 
69:575-579. 

Speed, D., Hemani, G., Johnson, M. R. et al. (2012). Am. J. 
Hum. Genet. 91:1011-1021. 

Svishcheva, G. R., Axenovich, T. I., Belonogova, N. M. et 
al. (2012). Nat. Genet. 44:1166-1170. 

The 1000 Genomes Project Consortium (2012). Nature 
491:56-65. 

VanRaden, P. M. (2008). J. Dairy Sci. 91:4414-4423. 
Visscher, P. M., Brown, M. A., McCarthy, M. I. et al. 

(2012). Am. J. Hum. Genet. 90:7-24. 
Yang, J., Benyamin, B., McEvoy, B. P. et al. (2010). Nat. 

Genet. 42:565-569. 
Yang, J., Weedon, M. N., Purcell, S. et al. (2011) Eur. J. 

Hum. Genet. 19:807-812. 
Yang, J., Zaitlen, N. A., Goddard, M. E. et al. (2014). Nat. 

Genet. 46:100-106. 
Zaitlen, N., Kraft, P., Patterson, N. et al. (2013). PLoS 

Genet. 9:e1003993. 
Zhou, X., Carbonetto, P., and Stephens, M. (2013). PLoS 

Genet. 9:e1003264. 
Zuk, O., Hechter, E., Sunyaev, S. R. et al. (2012). Proc. 

Natl. Acad. Sci. U. S. A. 109:1193-1198. 


