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ABSTRACT: New sequencing technologies enable the 
generation of an increasing number of livestock genomes. 
However using this data to understand how changes in the 
genotype affect function is hindered by poor annotation. 
For example, the Gene Ontology (GO) is routinely used for 
analyzing functional genomics data, however the GO does 
not include all key aspects affecting agricultural production 
(e.g. does not capture information about disease states or 
tissue expression). Moreover, technologies such as 
RNASeq identify many novel genes that have no known 
function. We have integrated new and existing tools to 
rapidly provide a first pass functional annotation for 
transcriptome data based upon sequence analysis of 
conserved protein motifs and sequence homology to better 
annotate genes. The result of this pipeline is a set of GO 
and pathway annotations that can be used to determine 
functional enrichment in a set of differentially expressed 
genes. 
Keywords: bioinformatics; Gene Ontology; functional 
genomics 
 

Introduction 
The development of next generation sequencing 

techniques for transcription profiling democratized 
functional genomics studies by enabling researchers to 
study an even broader range of species instead of focusing 
on species that have well defined genomes and resources 
(e.g., microarray platforms) available. However this same 
technique puts further pressure on the development of 
annotations and functional modeling tools that can support 
a much larger range of species and predict functions for 
novel genes identified by this same technique.  These same 
sequencing approaches also result in long lists of 
differentially expressed genes that do not per se provide 
useful information about the biological system being 
studied.  Instead, researchers must rely on biological 
modeling to understand how these gene expression lists 
provide insights about their biological systems (Cordero et 
al. (2007); McCarthy et al. (2007)). As a result, while the 
gap between data and knowledge is closing in for several, 
well studied species, but fundamental annotation to support 
functional modeling in a broad range of species is still 
required.  

In the following sections we describe the 
development of bioinformatics tools that enable livestock 
researchers to rapidly model their large scale functional 
genomics data sets, the integrated workflows for adding 
functional annotation data and how this data is used for 
functional analyses of differentially expressed gene sets 
(Figure 1). We also demonstrate the use of these workflows 
using livestock genomics data and describe how these 
workflows are being deployed on publicly accessible, high 

performance computing environments to provide livestock 
researchers with the easily accessible computing power 
they require. 
 

 
Figure 1: Workflows for functionally modeling RNASeq 
data sets. Workflows include adding functional annotation 
and using this data to do functional analysis. Tool names 
are itelicised. 

 
Bioinformatics Workflows and Tools 

Genome2Seq Analysis. A typical RNASeq 
analysis for functional genomics includes (a) initial quality 
checks and adapter trimming of sequence data; (b) aligning 
RNASeq reads to an existing genome or assembling 
transcripts de novo; (c) calculating expression values for 
transcripts; and (d) identifying transcripts that are 
differentially expressed between experimental conditions. 
The end result is a long list of genomic locations 
representing identified transcripts, along with their 
expression value. The Genome2Seq tool accepts lists of 
genomic locations and provides a look up service for 
common livestock genomes that links the genomic location 
to annotated genes and their GO annotation, or, if the 
location corresponds to unannotated genes, a fasta file of 
sequences that can be used for functional annotation. The 
Genome2Seq tool is available via the AgBase database 
(McCarthy et al. (2009)) and additional genomes can be 
requested via this resource. 

Researchers can easily obtain GO annotations for 
annotated genes by submitting the list of gene accessions in 
their differentially expressed list to GORetriever, a web-
based tool available from the AgBase database. 
GORetriever accepts a list of accessions and returns (a) a 
GO annotation file for this list; (b) a list of accessions that 
have no GO (that may be annotated using the functional 
annotation pipelines described below); and (c) a GO 



summary file that can be used as input for GOSlimViewer 
(described below). Since GO annotations are associated 
with gene products (proteins and RNAs), if researchers 
submit gene accessions, GORetriever also provides 
mapping information about the original input accession and 
it’s protein accession that the GO is associated with; this 
allows researchers to link their accessions directly with the 
GO information provided. 

Functional Annotation Workflow. An advantage 
of the transcriptomics approach is that it is able to identify 
previously unannotated genes (or ‘novel” genes) and 
transcript variants, making it a powerful tool for functional 
genomics for the many commercially important livestock 
species where genome annotation is poor or incomplete. 
However the cost of moving to a distributed model for 
genome annotation is that while many laboratories have the 
power to identify genes, providing functional information 
about what these genes do is a less well-defined process. If, 
as part of gene identification, genes are related to 
homologous or orthologous genes in related species, then 
initial gene nomenclature and prediction of function may 
also be assigned on this basis.  However, this approach does 
not lend itself well to downstream functional analysis. 

Our functional annotation pipeline leverages 
existing functional enrichment tools by providing GO 
annotation for enrichment analysis. We utilize an existing 
tool, InterProScan, in combination with the GOanna tool to 
rapidly provide “breadth” of annotation (i.e., most gene 
products have at least some GO annotation) across a wide 
range of species. 

The InterProScan tool (Jones, Binns, Chang et al. 
(2014)) uses an input file of sequences in a fasta format and 
scans these sequences for short motifs and domains linked 
to conserved functions. Since this tool is very 
computationally intensive, it is not suitable for deployment 
as a web service; instead we have deployed it on the iPlant 
Discovery Environment (DE) (Goff, Vaughn , McKay. et 
al. (2011)), where it utilizes Texas Advanced Computing 
Center (TACC) high performance computing resources.  A 
related DE tool, InterProScan Parser, takes the html output 
of InterProScan and maps the InterPro results to GO and 
pathway accessions, providing summaries as well as a 
standard GO annotation file format file that can be used in 
downstream GO enrichment analyses.  

The GOanna tool uses BLAST to identify 
homologous genes, searching against specialized databases 
that contain only GO annotated proteins (McCarthy et al. 
2006). If the query sequence matches a sequence in the 
database, the GO annotations can be transferred to this 
query and this homologous relationship indicated by 
assigning the annotation as “Inferred from Sequence 
Alignment” (ISA) evidence code and a related tool, 
GOanna2GA will convert GOanna output to a standard GO 
annotation file format. Since GO consortium standards 
require that only annotations assigned on the basis of 
experimental data are transferred based upon homology or 
orthology, GOanna’s default setting is to only report these 
annotations. In contrast, Blast2GO, a similar tool that 
assigns GO terms based upon an annotation score 
calculated from the compilation of multiple, similar GO 
annotations (Conesa and Goetz, 2008). Since GOanna was 

developed for use with smaller data sets (of up 5,000 
sequences or a fasta file size of 6Mb), it returns complete 
BLAST alignment data as an xml file linked to an excel file 
that contains the GO information.  We have updated 
GOanna to handle larger data sets where the user will not 
want to manually scan individual alignments by presenting 
users with alignment data as a tab-separated file; this 
version of GOanna has no input file limit and is deployed 
on the iPlant DE so that it can make use of high 
performance computing resources. We strongly recommend 
that users first test a subset of their data against the AgBase 
version of GOanna to identify suitable BLAST parameters 
and avoid spurious matches with their own data. 

It is worth noting that the GO Consortium is 
actively providing information about GO terms whose 
functions should be excluded from certain taxa (e.g. 
mammalian gene products should not be annotated to 
GO:0019684 photosynthesis). Neither InterProScan nor 
GOanna currently apply these taxon restrictions for GO 
terms to the output data and researchers should check their 
GO annotation data to ensure that assigned function is 
taxonomically consistent with their species of interest. We 
expect that future developments to these tools will address 
this current limitation. 

Combining GO annotations from InterProScan 
and GOanna enables researchers to rapidly produce a set of 
GO annotations for their experimental data set or species of 
interest. They may choose to summarize their data using the 
GOSlimViewer or GOSlimAuto (Davis, Sehgal and Ragan, 
2010) tools. GOSlimViewer uses pre-computed sets of high 
order GO terms (“GO Slim sets”) that describe broad 
functional categories. A newer tool, GOSlimAuto computes 
the most informative GO terms to describe particular 
experimental data sets, effectively creating an “on the fly” 
GO Slim set. Both tools are available via the AgBase 
database. 

Functional Enrichment Analysis. Once the 
functional annotation workflow has produced a 
comprehensive set GO annotations (or pathways 
annotations which are also produced by the InterProScan 
tool), a common analysis is to identify over-represented 
terms in the differentially expressed genes/transcripts. 
There are multiple tools that determine differential 
expression, including CuffDiff from the Tuxedo suite 
(Trapnell, Hendrickson, Sauvageau et al. (2014)), DESeq 
(Anders and Huber, 2010) and edgeR (Robinson, 
McCarthy, Smyth, 2010), which are available from the 
iPlant DE. Functional enrichment analysis is done by 
comparing the set of functional annotations for the 
differentially expressed transcripts to the functional 
annotations generated from the complete transcript set.  

Once the differentially expressed genes are 
identified, this gene set can be functionally analyzed to 
identify GO, pathways and other functional categories that 
are enriched in this set. There are a large number of tools 
specifically designed for GO enrichment analysis; some of 
them even provide a broader range of functional analysis by 
combining GO and pathways analyses. However, many of 
these tools are limited in the number of species for which 
they can do functional analysis, and even fewer consider 



technical biases generated by RNASeq data compared to 
microarray data sets. 

The AgriGO tool is a web-based tool specifically 
designed to support analysis of agricultural data, including 
chicken, cow, pig and horse data sets (Du, Zhou, Ling 
(2010)). This tool also allows users to upload their own GO 
annotation sets so that they can include analysis of novel 
gene data. Another advantage of this tool is that the output 
data is linked to REViGO. REViGO is a web-based tool that 
takes long lists of GO terms and summarizes them by 
clustering closely related terms (Supek, Bosnjak, Skunca 
(2011)). This enables researchers to more clearly identify 
functional changes in their differentially expressed gene 
lists. We note that this feature is useful for visualizing GO 
enrichment data, REViGO also accepts lists of GO terms 
generated as the output of any GO enrichment tool. 

Another useful tool for GO enrichment analysis is 
BiNGO (Maere, S., Heymans, K. and Kuiper, M. (2005)). 
BiNGO is Java tool that can be run as a plugin or “app” 
using Cytoscape (Saito R., Smoot M.E., Ono K. et al. 
(2012)). BiNGO allows researchers to upload their own GO 
annotations and enables analysis of data from a broad range 
of species, including common pathogens. Since it uses the 
Cytoscape system, the data is easily visualized and the 
analysis includes network analysis as well as the GO 
enrichment analysis. 

The KOBAS tool (Xie C., Mao X., Huang J. et al. 
(2011)) also includes a wide range of species, including 
microbial species, and does functional enrichment based 
upon GO, pathways and disease databases. 

A notable limitation of these functional enrichment 
tools is that they rely on the assumption that all genes are 
independent and equally likely to be selected as 
differentially expressed; this assumption is false for 
RNASeq experiments. In RNASeq data, expression values 
are linked to transcript length, and we have more statistical 
power to identify long genes as being differentially 
expressed than we do short genes. If this bias is not 
corrected, functional categories with a preponderance of 
long genes are more likely to be identified as enriched in an 
RNASeq data set. Young et al. (2010) proposed a model to 
correct for this bias and we have adapted this initial work to 
make it available as a web-based tool, GOSeq, on the iPlant 
DE. 

 
Livestock Analysis Example 

To demonstrate the workflows described above, 
we will use a bovine RNASeq data set collected from fetal 
pancreatic tissue. After Illumina sequencing, adapter 
trimmed sequences were mapped to the bovine genome 
(UMD 3.1) and differentially expressed genes identified 
using the Tuxedo pipeline and Cufflinks (v2.1.1). This 
analysis resulted in 914 differentially expressed transcripts, 
including 137 novel transcripts. Using Genome2Seq, we 
can map 35 of these ‘novel’ transcripts to annotated genes, 
indicating that they are transcript variants of an annotated 
gene. The AgBase database GORetriever tool identifiers 
26,760 GO annotations for 748 gene products; 26% of these 
GO annotations are already annotated using the combined 
functional annotation workflow. 

Functional analysis was done on this data set using 
both the AgriGO and KOBAS functional analysis tools. Our 
initial analysis used only GO annotations provided without 
the functional annotation workflow outlined above as input 
for the AgriGO Singular Enrichment Analysis (SEA) tool. 
Using this approach only 392 of the 914 differentially 
expressed genes had GO annotation. We used the Fisher 
statistical test and Hochberg multiple correction to identify 
391 GO terms with P-values ≤ 0.01. Among the GO terms 
identified are very general GO terms such as developmental 
process, cell death and response to stress. A criticism of 
using the GO for this type of analysis is that all too often 
the results in a list of broadly descriptive terms, such as 
these. 

Repeating the analysis with the same statistical 
parameters but including additional GO annotations 
provided by the functional annotation workflow identified 
14 GO terms with P-values ≤ 0.01, and these results were 
visualized using REViGO (Figure 2). While fewer GO 
terms are identified, these enriched functions include 
peptidase activity and cytokine activity terms that are 
expected from normal digestive and endocrine pancreatic 
function. This demonstrates the importance of obtaining a 
comprehensive set of GO annotations for functional 
analysis. 
 

 
Figure 2: Enriched GO terms from bovine pancreatic 
RNASeq data. Each GO term is represented by a circle, 
and related terms as shown as linked. Larger circles indicate 
a larger proportion of transcripts, compared to the 
background genome and darker red indicates a lower P-
values. Only terms with P-values ≤  0.01 are reported. 

 
Likewise, KOBAS pathways analysis using the 

same data set (with a Fisher exact test with Benjamini and 
Hochberg multiple test correction) identifies six 
differentially expressed pathways (P-values ≤ 0.01), 
including pancreatic secretion and protein digestion and 
absorption pathways. This information complements the 
GO enrichment analysis and together develops a model for 
genes involved in the developing pancreas. 
 

Conclusions and Future Development 



The work presented here demonstrates the utility 
of functional annotation and analysis workflows to rapidly 
provide functional modeling for livestock RNASeq data. As 
RNASeq is applied to an increasingly diverse range of 
species and more data is produced, providing resources that 
enable researchers to understand their functional genomic 
data requires not just mapping sequences to genomes, but 
also the ability to identify enriched functions from the same 
data sets. 

We are collaborating with iPlant developers to 
either adapt existing tools and workflows to the iPlant 
cyberinfrastructure or to develop new tools, as required. 
Our goal is to enable livestock researchers to do functional 
modeling on their large, RNASeq data sets in the same 
computational environment that they use for RNASeq. 
Future development will include adding additional tools to 
the iPlant DE and ensuring that links between these tools 
are seamless, so that the researchers can easily use the 
output of one tool as the input for the next tool in the 
workflow. 
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