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ABSTRACT: Genetic variance for complex traits in 
animal breeding are often estimated using linear mixed-
models that incorporate information from SNP-markers 
using a realized genomic-relationship matrices. In these 
models, individual genetic markers are weighted equally 
and the variation in the genome is treated as a “black box”. 
While this approach has proved useful in selecting animals 
with high genetic potential, it does not generate insight into 
the biological mechanisms underlying trait variation. We 
propose to build a linear mixed model approach to evaluate 
the collective effects of sets of SNPs in genomic features 
and open the “black box”. Using data on ADG and BG 
from 6,112 entire Duroc boars and a high-density SNP chip, 
we show here, that the QTL categories with highest relative 
importance of the SNP set were indeed biological 
meaningful. 
Keywords: genomic feature models; average daily gain; 
back fat depth; growth 

Introduction 

Genetic variance for complex traits such as body 
growth rate can be estimated by fitting linear mixed-models 
that that accounts for genetic relationships. Genetic 
relationships can be calculated from genetic markers and 
can be used to construct realized genomic relationship 
matrices. In this approach, the individual genetic markers 
are weighted equally and the variation in the genome is 
generally treated as a “black box”.  

A disadvantage with this “black box” modelling 
approach is that it does not provide any insight into the 
biological mechanisms underlying the trait variation. 
Evidence collected across genome-wide association studies 
shows that, while many genetic variants with small or 
moderate effects contribute to genetic variation, it appears 
that many independently associated variants are located in 
the same genes and many of these genes are connected via 
biological pathways (Lango Allen et al. (2010)).  

In this paper, we propose to lift the lid on the 
“black box” and take a peak inside. We present a linear 
mixed-model approach that evaluates the collective action 
of sets of SNPs on the trait phenotypes using genomic 
features (e.g., QTL regions from previous studies or 
biological pathways). Novel insights into the biological 
mechanisms causing variation in the traits was generated by 
identifying genomic features that are causally related to trait 
variation.  

We applied our approach to three growth traits in 
pure-bred Duroc boars (Sus scrofa). The genetic variation 
was decomposed according to genomic features defined by 
the QTL categories listed on the Pig QTLdb database 
(Rothschild et al. (2007)). 

Materials and Methods 

Animals: We used growth rate phenotypes from 
6112 pure-bred Duroc boars. The boars were part of the 
Danish pig-breeding system (Pig Research Centre, Danish 
Agriculture and Food Council, Denmark). 

Data: The phenotypic records were deregressed 
proofs for Average Daily Gain from 30kg-50kg body 
weight (ADG3050), Average Daily Gain from 30kg-100kg 
(ADG30100) and Back Fat depth (BF) (Ostersen et al. 
(2011)). The genotypic records were obtained from all 
phenotyped animals using the Illumina Porcine SNP60 
BeadChip (Illumina). The criteria for SNP editing was the 
same as in Ostersen (2011), with the exception that the 
minimum minor allele frequency was set to 0.01. This 
resulted in 33,756 validated SNPs available for our 
analysis. The SNPs were grouped according to the genomic 
location of QTLs for 167 trait categories downloaded from 
the Pig QTLdb database (Rothschild et al. (2007)). The 
maximum genomic region spanned by any QTL was limited 
to 2 Mb.   

Statistical analyses: An iterative REML approach 
was used to estimate the genetic variance (Wang et al. 
(2012)). The approach builds on the following linear 
mixed-model: 

 
𝐲 = µ + 𝐠 + 𝐞 

 
where y the vector of observations, µ is the overall mean, 
the random genetic effects 𝐠~N�0, 𝐆𝜎𝑔2�, and residuals 
𝐞~N(0, 𝐈𝜎𝑒2). The genomic relationship matrix, 𝐆, is 
constructed using all SNP markers as: 
 

𝐆 = 𝐖𝐃𝐖′/N, 
 

where 𝐖 is the centered and scaled genotype matrix, 𝐃 is a 
diagonal matrix containing the weight for each SNP, and N 
is the sum of the diagonal elements 𝐃 The SNP weights 
were initially set to unity. The genetic values, 𝐠, and 
estimates of the variance components, 𝜎𝑔2 and 𝜎𝑒2, were 
obtained using the software package, DMU (Madsen & 
Jensen (2012)). In subsequent iterations, each SNP was 
weighted according to its variance contribution equal to the 
squared SNP effect. The individual SNP effects were 
obtained from: 
 

𝐛̂ = 𝐃𝐖′(𝐖𝐃𝐖′)−𝐠�, 
where 𝐛̂ is the vector of estimated SNP effects. In each 
iteration the log-likelihood for the fitted model was 
determined and this iterative procedure was repeated until 



we observed a decrease in model fit as determined by a 
decrease in the log-likelihood. During this process the 
values of 𝐛̂ become more extreme and should result in 
SNPs that are causative, or highly correlated to the 
causative genetic variant, having a high weight in the model 
disregarding whether the effect on the trait is positive or 
negative. We determined a genetic value for each SNP set 
defined by the genomic feature using: 
 

𝐠� = 𝐠𝒊� + 𝐠�−𝒊 = 𝐖𝒊𝐛̂ + 𝐖−𝒊𝐛̂ 
 
where 𝐠�𝒊 is the genetic value associated to the i’th SNP set 
and 𝐠�−𝒊 denotes the genetic values associated to the 
remaining SNPs. From these partitioned genetic values we 
decomposed the genomic variance using: 

 

𝐕𝐚𝐫(𝐠�) = � 𝐕𝐚𝐫(𝐠�𝐢) 𝐂𝐨𝐯(𝐠�𝐢, 𝐠�−𝐢)
𝐂𝐨𝐯(𝐠�−𝐢, 𝐠� 𝐢) 𝐕𝐚𝐫(𝐠�−𝐢)

� 

 
We calculated the relative importance of the SNP set as the 
proportion of genomic variance that could be attributed to 
either the QTL or SNP set itself or the covariance between 
g�𝑖  and g�−𝑖 : 
 

𝛄(𝐠�𝒊) = (𝐕𝐚𝐫(𝐠�𝐢) + 𝐂𝐨𝐯(𝐠�𝐢, 𝐠�−𝐢))𝐕𝐚𝐫(𝐠�)−𝟏 
 
This approach gives us a framework where we can easily 
decompose the variance contributed by different types of 
genomic feature classification schemes.  

Results and Discussion 

For all of the three investigated traits the log-
likelihood ratio peaked at 4 iterations. As expected the 
estimated SNP effects became more extreme with each 

iteration resulting in a relatively low proportion of SNPs 
explaining almost all of the genetic variation (Fig.1).  

Although the optimal number of iterations was the 
same for all investigated traits, back fat seemed to have 
fewer important genes with larger effect than ADG (Fig.2). 
Even though the genetic correlation between early and late 
growth has been reported to be low (Hermesch et al. 
(2000)), the lack of difference between ADG30-50kg and 
ADG30-100kg in the current study is not surprising as the 
later encompasses the data of the first.  

Table 1 lists the top ten QTL categories for which 
the SNP set defined by the category had the highest relative 
importance of the SNP set for ADG30-100kg. Most of these 
categories are directly linked to growth, the proportion of 
adipose tissue or the water holding capacity. The balance 
between lean meat and fat in the carcass composition is one 
of the major determinants of ADG in pigs (Gjerlaug-Enger 
et al. (2011)). Although, we see a clear correlation between 
the set size of QTL markers and the proportion of total 
genomic variance it explains (Fig 3), the traits highlighted 
by our method were indeed biological relevant to ADG. 
However, as the 10 QTL marker sets with highest ϒQTL 
were also the SNP sets that contained the largest number of 
SNPs (Fig 3), we were not able to see if the QTL SNP sets 
explained more than expected from their size in this data 
set.   

We found leukocyte quantity among the top ten 
QTL categories (Table 1). While it seems logical that 
immune function is important to growth, as growth is 
hampered by disease, the relationship between leukocyte 
quantity and growth is not straight forward. A high 
leukocyte quantity might reflect either a high resistance 
towards diseases or a high infection rate. In addition, in a 
highly controlled production environment with low 
infection risk diversion of large proportions of the available 

 
Figure 1. Cumulative proportion of genomic variance in 
ADG 30-100 kg explained by individual SNPs for each of 5 
iterations. In the last iteration 20% of the SNPs explained 
as much of the genomic variance as 80% of the SNPs in 
iteration 1. 

 
Figure 2. Proportion of genomic variance explained of 
ADG30-50kg, ADG30-100kg and BF at iteration 4. The 
curve for ADG30-50kg and ADG30-100kg is practical 
identical while there is a small tendency for fewer genes 
with larger effect contributing to the genetic variance of 
BF. 



energy into immune function might not be advantageous.  
Regardless of these complications immune 

functions remains an interesting avenue for research on 
factors affecting ADG. 

Conclusion 
We used a linear mixed model approach that 

evaluated the collective effect of sets of SNPs in genomic 
features on average daily gain and back fat depth in pigs. 
The QTL categories with highest relative importance of the 
SNP set were biological meaningful and directly linked to 
growth. However as they also were the QTL marker sets 
with the largest number of SNPs, we cannot conclude that 
they explained more of the variance than expected from 
their size. 
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Figure 3. The correlation between the logarithm of the size 
of the QTL SNP set and the proportion of genomic 
variation it explained. The ten QTL categories from Table 1 
are marked by closed red symbols. 

 

Table 1. The top ten QTL categories for ADG30-100kg, ordered by relative importance of the SNP set (ϒQTL). 
QTL trait1 VarQTL

2 Varrest
3 CovQTL,rest

4 ϒQTL
5 

subcutaneous adipose thickness 48.40 1209 137.29 0.121 
postnatal growth  16.15 1350 82.79 0.065 
body mass 13.24 1381 68.86 0.054 
hind limb mass 7.24 1441 41.76 0.032 
longissimus dorsi muscle area 9.58 1446 38.53 0.031 
intramuscular adipose mass 5.39 1453 36.66 0.027 
skeletal muscle conductivity  5.17 1460 33.45 0.025 
white adipocyte size  4.71 1481 23.13 0.018 
leukocyte quantity 3.27 1481 24.14 0.018 
nipple quantity 2.84 1484 22.76 0.017 
1Trait associated with the QTLs used to define the gQTL marker set.  
2Genetic variation attributed to QTL marker set.  
3Genetic variation attributed to rest marker set.  
4Covariance between QTL and rest marker sets.  
5 ϒQTL = (VarQTL + CovQTL,rest)/(VarQTL + Varrest + 2 CovQTL,rest). 


