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ABSTRACT: Improvement of feed efficiency is essential 
in pig breeding and selection for reduced residual feed 
intake (RFI) is an option. The study applied Bayesian 
Power LASSO (BPL) models with different power 
parameter to investigate genetic architecture, to predict 
genomic breeding values, and to partition genomic variance 
for RFI and daily feed intake (DFI). A total of 1272 Duroc 
pigs had both genotypic and phenotypic records for these 
traits. Significant SNPs were detected on chromosome 1 
(SSC 1) and SSC 14 for RFI and on SSC 1 for DFI. BPL 
had similar accuracy and bias as GBLUP but power 
parameters had no effect on predictive ability. Genomic 
variance partitioning showed that SNP groups either by 
position (intron, exon, downstream, upstream and 5’UTR) 
or by function (missense and protein-altering) had similar 
average explained variance per SNP, except that 3’UTR 
had a higher value.  
Keywords: Bayesian Power Lasso;  genomic prediction; 
pigs 
 

Introduction 
 

Genomic selection using molecular markers 
covering the whole genome for predicting genomic 
breeding values (GEBVs) is widely used in both animal and 
plant species. In pigs, genomic selection is currently 
implemented and is attractive for traits which are expensive 
to measure or cannot be measured early in life. Feed 
efficiency is a very important trait in the breeding goal and 
is costly to record. Residual feed intake (RFI) is an 
alternative indicator for feed efficiency and selection for 
lower RFI may help to improve feed efficiency. Genomic 
selection reducing feed efficiency is interesting although 
choice of phenotypes is debated.  

Various methods have been proposed for genomic 
selection based on different assumptions about genetic 
architecture underlying the trait. The accuracy of methods 
depends on how these assumptions are fulfilled for the traits 
of interest. Bayesian least absolute shrinkage and selection 
operator (Bayesian LASSO (BL), Park and Casella, 2008) 
and Bayesian Power LASSO (BPL, Gao et al. 2013) 
assume that SNP effects follow a double exponential 
distribution (with an extra power parameter for BPL) and 
are attractive models for genomic selection. This is due to 
simplicity, computational ease and little (or no) need to 
postulate prior information (Legarra et al. 2012). Moreover, 
the assumption about genetic architecture in Bayesian 
models are more flexible than Genomic best linear unbiased 
prediction method (GBLUP), therefore models can be 
applied to phenotypes with little understanding of trait 
biology. The main aims of this study were to investigate 
genetic architecture of RFI and DFI based on partitioning 
genomic variance, and to investigate predictive ability using 
the BPL models. 

Materials and Methods 
 

Data and quality control. Phenotypic records 
included the feed intake and feeding behaviors in a period 
from 2008 to 2012 for Danish Duroc pigs. Daily feed intake 
(DFI) was recorded from 30 to approximately 105 kg at the 
national pig test station. Residual feed intake was the 
residual in the regression of DFI on average daily gain and 
backfat with initial body weight was as a covariate in the 
model (Do et al. 2013). Pigs were genotyped using the 
PorcineSNP60 BeadChip (Illumina, San Diego, CA). The 
criteria for screening the genomic data was a call rate per 
animal of 0.95, call rate per SNP marker of 0.95, Hardy 
Weinberg equilibrium test with p < 0.0001, and minor allele 
frequency > 0.05. Unmapped SNPs were removed from the 
study. After quality control (QC), 30232 SNPs and 1272 
pigs remained for analysis.  
 

Genomic prediction methods. For reference 
purpose, GBLUP model used was: y = 1µ + Xb + Zp + g + 
e in which y was the vector of observed phenotypic values 
of the animals (RFI or DFI), 1 was a vector of ones, µ was 
the overall mean, b was vector of fixed effect (herd-year-
section), X was a design matrix relating observations to the 
corresponding the fixed effect, p was a vector of random 
pen effect, Z was a design matrix relating observation to the 
corresponding the random pen effect, e was the vector of 
random error, and g was a vector of breeding value with 
var(g) = Gσg

2, in which σg
2 is genetic variance and G was 

the genomic relationship matrix. The GBLUP model was 
fitted using DMU package (Jensen and Madsen, 2010).  

The Bayesian Power LASSO (BPL) is a sparse 
shrinkage model that uses an exponential power distribution 
for marker effects; details of the model are in Gao et al. 
2013. BPL is an extension of BL by adding a power 
parameter that can modify the sparsity of the marker 
effects. The model was (y = 1µ + Xb + Mβ + e); where 
SNPs effect (βi) follow an exponential power 
distribution  𝑝(𝛽) = ∏ 𝜆

2
𝑚
𝑗=1 𝑒−𝜆|𝛽|𝑞 , where λ was a rate 

parameter, m was the number of markers, and q was the 
power parameter controlling the sparsity. The rate 
parameter was estimated from the data using a uniform 
prior. The power parameter was set to 0.3, 0.5, 0.7, 0.9 or 
1.0 (q = 1 corresponds to the ordinary BL). These models 
were denoted as BPL0.3, BPL0.5, BPL0.7, BPL0.9 and BL. 
The Bayesian analyses were performed using BayZ 
package (http://www.bayz.biz/). Each of the Bayesian 
analysis was run as a single chain with a length of 50000 
samples, and the first 5000 cycles were regarded as the 
burn-in period. 
 

Evaluation criterion. To investigate the accuracy 
of different genomic selection methods, we split the records 
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into a training dataset (968 pigs) and a validation dataset 
(304 pigs) by birth date at 1 January 2012. Moreover, we 
also corrected phenotypes for a fixed effect of herd-year-
section and a random pen effect to avoid use of overlapping 
information between the reference and validation datasets. 
The adjusted phenotypes (yc) were computed based on the 
full data, and the adjusted phenotypes were the sum of EBV 
and the estimated residual errors (yc = ĝ+ê) (Ostersen et al. 
2011). The regression of yc on GEBV was used to assess 
bias or inflation of prediction.  
 

Partitioning genomic variance based SNPs 
groups. There were three different methods to group SNPs: 
(i) functional relevance of SNPs for RFI based on data 
mining, (ii) groups based on positions in the genome, and 
significance based on previous association study in the 
same data set. Data mining of candidate SNPs for RFI was 
performed based on 3 main databases (Pubmed at 
http://www.ncbi.nlm.nih.gov/pubmed, ISI web of 
knowledge at http://portal.isiknowledge.com/ and Scopus at 
http://www.scopus.com/). Positional and functional groups 
of SNPs were based on Sus Scrofa gene 10.2 at 
http://www.ensembl.org/biomart. The SNPs were classified 
upon these positions in a gene (intron, exon, coding 
sequence, 3’UTR, 5’UTR, upstream and downstream 
region) as well as based on these function if they are 
missense variants or protein-altering variants.  
 

Results and Discussion 
 

Genome wide mapping and predictive 
performance. Bayesian linear regression has been widely 
used for the GWA studies. We estimated SNP effects and 
SNP variance using the BPL models. The total estimated 
genomic variance varied with the sharpness (q value), 
however the top SNPs with highest variance (effects) were 
similar in models with different power parameters. We also 
found that SNPs on chromosome (SSC) 1 (30-31Mb) and 
60-61Mb had the largest effects on variance of RFI (Figure 
1) and DFI, respectively, which confirmed the results from 
linear analysis recorded in previous GWA study (Do et al. 
2014). Moreover, we also detected some SNPs on SSC 14 
for RFI, which were not recorded in our previous GWA. It 
is important to note that the standard BL (q = 1) estimated 
the highest value of additive genetic effects (Table 1). 
Reducing the q value allowed more intense shrinkage and 
higher sparsity of SNPs effects that explained the estimated 
SNP variance is higher at q = 0.3 than q = 1. Moreover, 
genetic architecture of traits influences on the estimation of 
SNP variance. Because RFI was defined as DFI corrected 
for growth and backfat, therefore numbers of QTL effect on 
RFI might be less than DFI. This was in agreement that the 
total genomic variance of RFI was smaller than that of DFI. 

Accuracy of genomic prediction for RFI and DFI 
was similar (Table 1). For both RFI and DFI, all BPL 
methods showed similar accuracy of prediction as the 
GBLUP method. These results was in agreement with 
Ostersen et al. 2011, who reported that BL had same 
reliability with GBLUP method for food conversion ratio 
traits in pigs. There was no difference in prediction 
accuracy using different sharpness in the current study 

(Table 1). Gao et al. 2013 indicated that BPL model with 
power parameter of 0.3 had highest accuracy. In our data 
there were a closer relationship between training and testing 
populations than that found in Gao et al. 2013. GBLUP 
model had similar bias as BPL. Several studies found 
Bayesian methods improved the genomic selection 
accuracy but increased bias compared to GBLUP method 
(Gao et al. 2013 and Su et al. 2012).  

 
 

 
Figure 1: Manhattan plot of estimated SNP variance for 
RFI with BPL0.3 

 
 
 

Table 1. Estimation of total genomic variance (TGV), 
prediction accuracy of GEBVs for daily and residual 
feed intake 
Method 

 
DFI 

 
RFI 

 
 TGV 

 
Cor 

 
Reg 

 
 

TGV 
 

Cor 
 

 

Reg 
 

 
BEP0.3 16318.9 0.34 1.39 11705.6 0.31 1.23 
BEP0.5 16262.1 0.34 1.40 12071.3 0.31 1.20 
BEP0.7 15986.5 0.33 1.43 12295.4 0.31 1.20 
BEP0.9 16472.9 0.34 1.41 12334.1 0.32 1.23 
BL 16836.4 0.33 1.35 12583.1 0.31 1.19 
GBLUP 19478 0.33 1.28 14380 0.31 1.23 
 

Partitioning of genomic variance. Patterns of 
genomic variance from different groups of SNPs are shown 
in Table 2. To a large extent, the contribution of different 
groups was linearly associated with the number of SNPs in 
the groups. Among them, intron group contained biggest 
number of SNPs (5621 SNPs), therefore it contributed 
around 20% of total genomic variance for both RFI and 
DFI. SNPs in exons did not contribute more on average 
than the intron SNPs, but SNPs in 3’ UTR explained on 
average three times more, and SNPs from literature mining 
explain on average two times more variance than intronic 
and exonic SNPs. Results also show that an average 
contribution to total genetic variance of RFI in the “data 
mining group” was lower than in the other groups. This 
reflects that: (i) many SNPs associated with RFI or feed 
traits are not on the 60 K SNPs chip or does not pass QC 
control, (ii) very few GWAS and QTL have been found for 
RFI in pigs and mostly done by using cross breeding 
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experiments or in other pig breeds, (iii) and the definition of 
RFI are currently inconsistent in different studies and 
associated SNPs may depend on the definition. Secondly, 
different groups by position using Ensembl database had 
similar average variance contribution per SNP, such as a 
SNP in exon or intron had almost the same values of 
variance contribution. With an exception that average 
contribution of SNPs in 3’UTR to genomic variance was 
more than one in other groups. This was probably due to the 
number of SNPs in the group was very small and the 
average contribution increased due to only several highly 
variant SNPs. However 3'UTR often contains regulatory 
regions that influence post-transcriptional gene expression, 
and therefore it could also influence specific traits.  
 
Table 2. Partitioning of genetic variance for different 
SNP groups 
    DFI 

 
RFI 

 
 

Group1 
 

 

No. 
SNPs  

 

Ex.Var 
(%) 

 

Average 
SNP.Var 

 

Ex.Var 
(%) 

 

Average 
SNP.Var 

 
Exon 220 0.77 3.50E-05 0.74 3.39E-05 

Intron 5621 18.99 3.38E-05 19.45 3.46E-05 

Coding 
sequence 

214 0.75 3.50E-05 0.73 3.41E-05 

Missense 
variants 

53 0.19 3.55E-05 0.19 3.54E-05 

Proterin-
alterning 
variant 

54 0.19 3.58E-05 0.19 3.53E-05 

3’UTR 
variants 

26 0.38 1.47E-04 0.34 1.32E-04 

5’UTR 
variants 

110 0.09 7.76E-06 0.12 1.09E-05 

Upstream  
variants  

1051 3.51 3.34E-05 3.29 3.13E-05 

Downstream 
variants  

987 3.30 3.35E-05 3.16 3.20E-05 

Significantly 
associated 
SNPs 2 

11 NA NA 0.43 3.88E-04 

Suggestively 
associated 
SNPs 3 

164 NA NA 2.11 1.28E-04 

Data mined 
SNPs/genes 4 

110 NA NA 0.69 6.24E-05 

1: a SNP can appear in some different groups 
 2and 3: Significant and suggestive SNPs associated with  
RFI 2 in previous studies (Do et al., BMC Genetics, 2014)  
4

: SNPs have functionally involved in RFI from data 
mining, the summary for all breeds. 
 
 

 
 
 
 

Conclusion 
 

The study showed the BPL methods had similar 
prediction accuracy and bias as those reported with GBLUP 
method. The different shape parameters did not affect 
predictive performance of BPL methods. These results 
suggested that the choice of genomic selection method had 
less impact on predictive performance for RFI and DFI. 
However, the study helped better understanding of the 
genetic architecture of RFI and DFI as well as the 
contribution of different functional SNP groups to total 
genomic variance of these traits. Further work will 
investigate the predictive ability using different SNPs group 
for RFI as well as it component traits.  
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