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ABSTRACT: Data from individually controlled feed 
consumption of 640 Nellore young bulls (DMI), average 
daily gain (ADG), feed conversion rate (FCR), residual feed 
intake (RFI) and residual intake and body weight gain 
(RIG), genotyped in Illumina Bovine SNP50 v2 DNA 
Analysis BeadChip were used. After quality control, 28,231 
DNA markers were considered informative and were 
submitted to six approaches for estimation of molecular 
breeding values: Bayes A, Bayes B, Bayes C, Bayes Cπ, 
GBLUP and Single Step. Accuracies of genome-assisted 
expected progeny differences were compared with 
accuracies estimated from single traits REML BLUP 
analyses and the increment is reported in this paper. Very 
intense impacts of using molecular information were 
observed in genotyped animals, and their sires and dams, 
with genotyped young bulls estimates reaching accuracies 
as high as the ones of bulls with 45 or more progeny. 
Keywords: Bos indicus; Beef cattle; Feed efficiency; 
Genome assisted EBV 
 

Introduction 
 

There is a global concern about the environmental 
impact of livestock production and competition for food, 
grain and supplements that can be used for humans and 
cattle. Beef cattle growth and feed efficiency are 
economically relevant traits for several beef production 
systems, as food is one of the most important components 
of costs, especially for feedlots, a growing tendency on 
intensive beef industry. Nellore is the most important beef 
breed in the Brazilian herd (Ferraz & Felicio (2010)), and, 
as the country is one of the major players in beef 
international  market, several studies of feed efficiency and 
on genomics applied to economically important traits are 
being developed in Brazil and Latin America, on Bos 
indicus cattle (Pinto et al. (2011); Rezende et al. (2012); 
Silva et al., (2012); Montaldo et al., (2012); Gomes et al., 
(2013); Alexandre et al., (2014); Almeida et al., (2014a,b); 
Grion et al., (2014)). However, to date, there is no 
consensus about the most adequate model for evaluation of 
feed efficiency in Bos indicus. 

The objective of this study was to evaluate the 
effect of incorporation of genomic information on the 
accuracy of Expected Progeny Differences (EPD), of five 
traits related to feed efficiency in Nellore cattle. 

 
Materials and Methods 

 

Data and trait definition. Records of 640 Nellore 
(Bos indicus) males, born between 2005 and 2011, with age 
of 611.5±100.4 days and 388.9±45.7 kg were used in 11 
experiments of individual control of feed intake, realized 
from 2007 to 2012 with days in feed from 70 to 90 days. 
Measured traits were: Dry matter intake (DMI) for each 
animal, adjusted to dry matter; Average daily gain (ADG). 
The feed efficiency traits, feed conversion ratio (FCR), 
residual feed intake (RFI) and residual intake and body 
weight gain (RIG) were calculated using DMI and ADG. 

Models for trait calculations. FCR was calculated 
by ratio of DMI by ADG, while RFI and RIG represent the 
residues (ε1 and ε2) of regression equations that estimated 
DMI and ADG, respectively. Contemporary groups (CG) 
considered as the different experiments. The sexual 
condition (steers and young bulls) was included as a 
covariate in the statistical models. The models for 
estimating these traits were: 

𝐷𝑀𝐼 = 𝛽0 + 𝛽1𝐴𝐷𝐺 + 𝛽2𝑀𝐵𝑊0.75 + 𝛽3𝑆𝐶 + 𝛽4𝐶𝐺 + 𝜀1 

𝐴𝐷𝐺 = 𝛽0 + 𝛽1𝐷𝑀𝐼 + 𝛽2𝑀𝐵𝑊0.75 + 𝛽3𝑆𝐶 + 𝛽4𝐶𝐺 + 𝜀2 

The parameters (β) estimated based on the PROC MIXED 
procedure of the SAS software.  

RIG was calculated by: 

𝑅𝐼𝐺 = 𝑅𝐺 + (−1𝑅𝐹𝐼) 
 
Adjustment of phenotypes: Records were 

adjusted to fixed effects, estimated on single trait analyses 
performed by MTDFREML (Boldman et al., 1995) under 
animal model. Fixed effects fitted were contemporary 
group, age and weight at the begging of the experiment 
were taken into account as quadratic covariates, considering 
1055 phenotyped animals, from which only 640 were 
genotyped. This strategy was used to better estimate fixed 
effects. 

 
Allele substitution effect and estimation of 

molecular breeding values (MBV). These values were 
estimated by GWAS methodologies Bayes A, Bayes B, 
Bayes C and Bayes Cπ, using the software GenSel (e-BIGS, 
Fernando & Garrick (2013); Garrick & Fernando (2013); in 
Gondro et al. (2013), chapters 10 & 11, available at 
http://bigs.ansci.iastate.edu/). The analysis considering 
GBLUP and Single Step were performed using BLUPF90 
(Misztal et al. (2009), available at 
http://nce.ads.uga.edu/~ignacy/ newprograms.html).  

http://bigs.ansci.iastate.edu/


Table 1. Variance components used in 
single-trait REML animal model analysis 
Trait Genetic 

variance 
Residual 
variance 

Heritabilty 

DMI 0.262 0.499 0.34 
ADG 0.029 0.068 0.42 
FCR 0.160 3.800 0.04 
RFI 0.085 0.560 0.13 
RIG 0.106 0.855 0.11 
DMI - Dry matter intake; ADG - Average daily gain; 
FCR – feed conversion rate; RFI - residual feed intake, 
RIG - residual intake and body weight gain 

 
Table 2. Variance components used in Bayes A, Bayes B, 
Bayes C and Bayes Cπ, GBLUP and Single Step analysis 
Trait Method 

(Bayes) 
Genetic 
variance 

Residual 
variance 

Genomic 
h2 

Π 
(%) 

DMI A 0.712 0.861 0.453  
 B 0.635 0.935 0.404 1.5 
 C 0.623 0.940 0.399 1.5 
 Cπ 0.641 0.915 0.411 61.2 
ADG A 0.019 0.063 0.237  
 B 0.018 0.064 0.217 1.5 
 C 0.021 0.061 0.258 1.5 
 Cπ 0.016 0.066 0.190 75.1 
FCR A 0.421 2.448 0.147  
 B 0.436 2.416 0.153 1.5 
 C 0.436 2.416 0.153 1.5 
 Cπ 0.347 2.517 0.121 91.4 
RFI A 0.107 0.695 0.133  
 B 0.092 0.707 0.116 1.5 
 C 0.119 0.690 0.147 1.5 
 Cπ 0.023 0.762 0.030 99.4 
RIG A 0.135 1.054 0.114  
 B 0.135 1.054 0.114 1.5 
 C 0.149 1.042 0.125 1.5 
 Cπ 0.027 1.140 0.023 99.9 
DMI - Dry matter intake; ADG - Average daily gain; FCR – feed 
conversion rate; RFI - residual feed intake, RIG - residual intake and body 
weight gain 

 
Bayesian analysis were performed in with 41,000 

iterations and burn-in of the first 1,000. The variance 
components used for single-trait analysis are presented in 
Table 1. The prior genetic and residual variances were 
estimated using Bayes C, with π = 0,015. These genetic 
parameters used in the six approaches for estimating MBV, 
in Table 2 and the variance components for two-trait 
analysis in Table 3. Similar varcomp were used for GBLUP 
and Single Step analysis. 

The ghats generated by each method were 
considered as MBV for each animals and used, for Bayes 
A. B, C and Cπ, as a second trait in two-trait analysis under 
REML animal model (MTDFREML, Boldman et al., 1995), 
being the first trait the phenotypes for DMI, ADG, FCR, 
RFI and RIG, in proper models. Accuracies were 
considered the correlation between the estimate and the 
“true” value (rT,I).  Accuracies from the two-trait analysis, 
that generated genome assisted EPD, were compared to the 
single trait analysis using the traits and proper models, 
which generated normal EPD and their accuracies for each 

animal in the pedigree. Those comparisons were made for 3 
classes of animals: young bulls, genotyped, sires and dams. 
 The concept equivalent progeny number was 
calculated as a quadratic regression of accuracy for a given 
bull, on its progeny number. 
 
Table 3. Variance components used in two traits REML  
analysis, considering molecular breeding values from 
Bayes A, Bayes B, Bayes C and Bayes Cπ analysis and 
second traits 
Trait Method Genetic 

variance 
of MBV 

Residual 
variance 
of MBV 

h2 of 
MBV 

Genetic 
correlation 

DMI Bayes A 0.142 0.060 0.70 0.86 
 Bayes B 0.143 0.021 0.87 0.97 
 Bayes C 0.129 0.222 0.85 0.96 
 Bayes Cπ 0.138 0.022 0.86 0.99 
ADG Bayes A 0.003 0.001 0.71 0.85 
 Bayes B 0.003 0.001 0.69 0.82 
 Bayes C 0.005 0.001 0.84 0.98 
 Bayes Cπ 0.002 0.001 0.62 0.76 
FCR Bayes A 0.045 0.010 0.82 0.45 
 Bayes B 0.040 0.023 0.63 0.95 
 Bayes C 0.059 0.007 0.90 0.90 
 Bayes Cπ 0.026 0.023 0.53 0.96 
RFI Bayes A 0.009 0.005 0.63 0.98 
 Bayes B 0.022 0.009 0.70 0.84 
 Bayes C 0.010 0.006 0.60 0.97 
 Bayes Cπ 0.007 0.004 0.62 0.97 
RIG Bayes A 0.007 0.005 0.60 0.66 
 Bayes B 0.006 0.003 0.68 0.83 
 Bayes C 0.010 0.004 0.72 0.99 
 Bayes Cπ 0.001 0.001 0.60 0.62 
DMI - Dry matter intake; ADG - Average daily gain; FCR – feed 
conversion rate; RFI - residual feed intake, RIG - residual intake and body 
weight gain 
 

Results and Discussion 
 

The impact of the incorporation of genomic 
information in the accuracy of estimates of breeding values 
for these very difficult and expensive to measure traits, is 
presented in Table 4. It is important to express these 
impacts by class of animals (genotyped young bulls, their 
sires and dams). Very important enhance of accuracy can be 
observed for genotyped animals, especially for FCR, RFI 
and RIG and for MBV estimated by Bayesian methods. 
Less important increases were observed for DMI and ADG. 
Young bulls’ sires and dams, although not genotyped, 
obtained large increments on their accuracies when their 
genomic assisted EPV for FCR, RFI and RIG were 
estimated, similarly to what happened with genotyped 
animals. Differences of increment on accuracies can be 
explained by different assumptions of each method, like 
variance of markers, number of markers considered 
important, etc.  

The mean accuracy of young bulls, depending on 
trait and method of estimation of MBV reached values as 
high as .99 (DMI, Bayes Cπ), .96 (ADG, Bayes B), .95 
(FCR, GBLUP), .94 (RFI, Bayes C) and .97 (RIG, Bayes C) 
equivalent to the accuracy of bulls with, respectively, 30, 



23, more than 45 and  more than 45 progeny. That reduces 
the risk of selection decisions, and generation interval, if 
young bulls are used. Results support the importance of 
genotyping young animals measured for feed efficiency and 
the use of molecular breeding values in the estimation of 
EPD has important impact of accuracies, even in non-
genotyped sires and dams. However, as MBV and original 
phenotypes have a linear combination that increment on 
accuracy should have been overestimated. 

 
Table 4.  Impact on accuracy of EBV, expressed as 
percentage of increment in relation to single-trait 
analysis, when using molecular breeding value (MBV) 
estimated by different methods. 

Trait 

Method of 
estimation 

of MBV 

Impact on accuracy 
Young 
bulls 

Sires Dams 

DMI 

Bayes A  20.0 7.4 16.8 
Bayes B 53.2 30.5 50.2 
Bayes C 49.4 27.3 46.2 
Bayes Cp 59.0 34.6 55.5 
GBLUP 0.9 -4.4 -2.8 
Single Step 15.8 7.2 12.7 

ADG 

Bayes A  10.4 1.9 7.1 
Bayes B 6.7 -0.4 3.2 
Bayes C 41.8 22.5 38.2 
Bayes Cp 2.1 -3.1 -1.5 
GBLUP 2.4 -3.0 -1.1 
Single Step 14.6 4.0 11.1 

FCR 

Bayes A  62.6 37.0 64.0 
Bayes B 247.0 179.8 255.7 
Bayes C 232.1 168.5 240.5 
Bayes Cp 253.5 184.2 261.7 
GBLUP 257.5 187.5 266.2 
Single Step 229.8 165.2 237.2 

RFI 

Bayes A  124.4 82.4 124.0 
Bayes B 79.5 48.7 78.9 
Bayes C 120.4 79.7 120.4 
Bayes Cp 118.0 77.8 117.9 
GBLUP 30.7 14.0 28.4 
Single Step 31.7 14.9 29.7 

RIG 

Bayes A  39.1 22.7 36.5 
Bayes B 144.4 98.1 144.3 
Bayes C 144.5 98.7 144.8 
Bayes Cp 34.0 19.4 31.4 
GBLUP 15.7 6.0 11.3 
Single Step 16.8 6.7 13.0 

DMI - Dry matter intake; ADG - Average daily gain; FCR – feed 
conversion rate; RFI - residual feed intake, RIG - residual intake and body 
weight gain 

 
 

 

Conclusion 
 

The incorporation of molecular information in the 
estimation of EPD of Nellore cattle can be useful as it 
produces increments in the level of accuracy of the genomic 
assisted estimations. This incorporation might decrease risk 
in selection decisions, and increases genetic gain/year, both 
by increasing accuracy and decreasing generation interval, 
when using young replacement genotyped bulls. Further 
studies, using cross validation need to be implemented. 
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