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ABSTRACT: Currently, genome-wide selection methods 
are being successfully applied in dairy and beef breeds 
world-wide. Direct genomic breeding values (DGVs) in 
these breeds are estimated using genotypes generated either 
through high density SNP arrays such as Illumina 
BovineSNP50 BeadChip or by imputing these  genotypes 
from low density arrays such as Illumina BovineLD 
BeadChip. However, research on applied genomic selection 
in tropical breeds such as Nelore is rather limited. The 
objective of this study is to estimate DGVs for several 
economically important traits routinely evaluated at 
National Association of Breeders and Researchers 
(Associação Nacional de Criadores e Pesquisadores -
ANCP). This study also examines the increase in accuracy 
of genomic predictions when utilizing higher density chips 
such as Illumina BovineHD SNP chip (HD chip). The 
average accuracy for reproductive, productive, visual body 
conformation scores, and other traits were respectively 
0.58, 0.53, 0.34, and 0.57.  
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Introduction 
 

There are a number of traits recorded in Nelore 
national evaluation programs that contribute to the 
economic efficiency of beef production in Brazil. In this 
study, the genomic selection approach (Meuwissen et al. 
(2001)) was applied to enhance accuracy of selection in 
Nelore cattle. Reproductive traits included: age at first 
calving, gestation period, heifer pregnancy, scrotal 
circumference at 365 and 450 days and stayability.  
Production traits included maternal ability at 120 and 240 
days, and weight at 120, 210, 365 and 450 days. 
Accumulated production, an index trait, takes into account 
cow’s ability to give birth regularly (and early), and to 
wean heavier calves (Lobo et al. (2000)) . 

Visual body conformation scores have been used 
in Nelore cattle genetic evaluation program to predict 
finishing precocity and carcass maturity and quality. In this 
study, three such visual scores measured at weaning and 
yearling were studied; body conformation, muscularity, and 
precocity. In addition, other traits such as mature height, fat 
thickness, and rib eye area were also evaluated.  

The Illumina BovineSNP50 BeadChip was 
developed for Taurus cattle;  and,  as a result, only half of 

the markers on BovineSNP50 are segregating in Nelore 
cattle. The Illumina HD Beadchip was designed to include 
markers specifically segregating in Indicus cattle. Thus, in 
this study, an attempt was also made to evaluate the 
improvement in genomic prediction accuracy associated 
with use of Bovine HD Beadchip genotypes. 

Materials and Methods 
 

Data: A total of 2,241 Nelore cattle with EBVs 
and genotypes were available for this study: 763 of the 
animals were genotyped with Illumina BovineHD 
BeadChip (HD) and the remaining animals were genotyped 
with Illumina BovineSNP50 v2 BeadChip (50K). All 50K 
genotypes were imputed to HD using FImpute (Sargolzaei 
et al. (2010)).  
Traits: A total of 22 EBV traits were classified into four 
trait groups: reproductive, productive, visual body 
conformation scores, and other traits. The list of specific 
traits in each trait group, heritability estimates, and 
summary statistics are presented in Table 1.  
Genotypes: Markers with minor allele frequency (MAF) 
less than 0.05 were removed from the analysis. The number 
of markers utilized for genomic predictions were 25,458 
and 492,887 for 50K and HD respectively.  
Data splits for cross-validation and training: A subset of 
data consisting of higher accuracy EBVs was used to 
estimate genomic predictions. The accuracy cut-off 
thresholds for this purpose were determined based on the 
accuracies of weight at 120 days, body conformation at 
weaning and rib eye area. For each trait, the training dataset 
was classified into five equally sized cross-validation 
groups using IBS-based clustering methods (Boddhireddy 
et al. (2014)). Each IBS cluster consisted of animals that 
were more closely related to the animals within the cluster 
and distantly related to animals outside. This clustering 
strategy allows one to compute predictive correlations in 
distantly related group of animals through cross-validation 
methods. In the cross-validation approach, a prediction 
equation was developed using the marker effects estimated 
in four of the five groups and tested in the fifth group that 
was not used for marker effect estimation. This fifth group 
provided the cross-validation results from that calibration. 
This process was repeated five times leaving a different 
group out of the estimation of marker effects each time.  
Computation and evaluation of DGVs: The allele 
substitution effect for each marker was computed using  



Table 1: Heritability estimates and summary statistics 
for the traits used in this study.  Heritability is denoted 
as h2. 
 

Trait h2 Animals Mean 
EPD 

Mean 
BIF 

Accuracy 

Reproductive traits     
Age at first calving. months 0.11 1,496 -0.53 0.26 

Gestation period 0.37 1,496 0.58 0.32 

Heifer pregnancy rate, % 0.24 1,496 48.97 0.18 
Scrotal circumference at 
365 days, cm 0.40 1,496 0.19 0.35 

Scrotal circumference at 
450 days, cm 0.43 1,496 0.21 0.36 

Stayability, % 0.12 1,496 55.92 0.23 

Productive traits     
Accumulated production, 
kg/yr 0.20 1,496 3.16 0.24 

Maternal ability at 120 
days, kg 0.11 1,496 1.22 0.29 

Maternal ability at 210 
days, kg 0.10 1,496 1.48 0.28 

Weight at 120 days, kg 0.23 1,496 2.60 0.42 

Weight at 210 days, kg 0.25 1,496 4.07 0.41 

Weight at 365 days, kg 0.32 1,496 7.85 0.45 

Weight at 450 days, kg 0.34 1,496 8.33 0.45 

Visual scores     
Body conformation at 
weaning 0.53 777 56.04 0.45 

Body conformation at 
yearling 0.51 777 60.49 0.45 

Muscularity at weaning 0.53 777 52.51 0.47 

Muscularity at yearling 0.44 777 55.58 0.38 

Precocity at weaning 0.53 777 50.05 0.38 

Precocity at yearling 0.49 777 54.60 0.38 

Other traits     
Height 0.25 1,046 0.56 0.17 

Fat thickness, mm 0.35 1,030 -0.02 0.35 

Rib eye area, cm^2 0.35 1,053 0.20 0.35 

 
 
Gensel (Fernando and Garrick (2008)), ‘BayesC’ method. 
The value of Pi denoting the proportion of markers 
excluded iteratively was 0.90 and 0.99 for BovineSNP50 
and HD data, respectively. The description of estimation of 
marker effects and pooled correlation across five cross-
validation groups are given in Boddhireddy et al. (2014). 
The DGV of each animal in the dataset was calculated by 
summing the products of the estimated marker substitution 
effects and the number of ‘A’ alleles in the genotype. 
Evaluation of genomic prediction accuracies was achieved 
by computing the correlation between DGVs and EBVs.  In 
addition, the regression of EBVs on DGVs was calculated 
to evaluate prediction bias. 

 
 

Table 2: Genomic prediction accuracies in 50K and HD 
datasets. Accuracy is measured as correlation between 
EBVs and DGVs. Cor_50K and Cor_HD denotes 
accuracies and  Reg_50K and Reg_HD denotes bias 
associated with prediction accuracies respectively for 
for 50K and HD datasets.  

Trait Cor_50K Reg_50K Cor_HD Reg_HD 

Age at first 
calving. months                0.64 0.89 0.64 0.90 

Gestation period 0.46 0.71 0.50 0.79 
Heifer pregnancy 
rate, % 0.64 0.87 0.64 0.89 

Scrotal 
circumference at 
365 days, cm 

0.57 0.89 0.59 0.95 

Scrotal 
circumference at 
450 days, cm 

0.56 0.86 0.59 0.93 

Stayability, % 0.58 0.70 0.59 0.77 

Reproductive 
Average     0.58 0.82 0.59 0.87 

Accumulated 
production, kg/yr 0.51 0.70 0.54 0.79 

Maternal ability at 
120 days, kg 0.48 0.73 0.50 0.81 

Maternal ability at 
210 days, kg 0.48 0.74 0.51 0.82 

Weight at 120 
days, kg 0.63 0.94 0.63 0.94 

Weight at 210 
days, kg 0.61 0.84 0.64 0.89 

Weight at 365 
days, kg 0.56 0.79 0.52 0.69 

Weight at 450 
days, kg 0.44 0.53 0.46 0.60 

Productive 
Average 0.53 0.75 0.54 0.79 

Body 
conformation at 
weaning 

0.31 0.40 0.36 0.44 

Body 
conformation at 
yearling 

0.29 0.35 0.30 0.36 

Muscularity at 
weaning 0.30 0.38 0.28 0.34 

Muscularity at 
yearling 0.40 0.52 0.32 0.34 

Precocity at 
weaning 0.37 0.47 0.34 0.42 

Precocity at 
yearling 0.37 0.47 0.38 0.48 

Visual Scores 
Average 0.34 0.43 0.33 0.40 

Height  0.72 0.98 0.71 0.97 

Fat thickness, mm 0.41 0.68 0.42 0.72 
Rib eye area, 
cm^2 0.58 0.87 0.59 0.89 

Other Traits 
Average 0.57 0.84 0.57 0.86 

 
 

Results and Discussion 
 

The accuracy of genomic predictions in cross-
validation datasets with 50K and HD data is presented in 
Table 2. The five-fold cross validation correlations for 
reproductive traits ranged from 0.46 to 0.64 with a mean of 
0.58 with 50K dataset and from 0.50 to 0.64 with a mean of 



0.59 with HD dataset; for production traits, the correlations 
ranged from 0.44 to 0.63 with a mean of 0.53 with 50K 
dataset and from 0.46 to 0.64 with a mean of 0.54 with HD 
dataset; for visual body conformation scores, the 
correlations ranged from 0.29 to 0.40 with a mean of 0.34 
with 50K dataset and from 0.28 to 0.38 with a mean of 0.33 
with HD dataset, and the correlations for rest of the traits 
ranged from 0.41 to 0.72 with a mean 0.57 with 50K dataset 
and from 0.42 to 0.71 with a mean 0.57 with HD dataset. 
The regression coefficients on average were 0.82, 0.75, 
0.47, and 0.84 with 50K dataset and were 0.87, 0.79, 0.40, 
and 0.86 with HD dataset respectively for reproductive, 
productive, visual body conformation scores, and other 
traits. The regression coefficients are lower than one, 
indicating that estimates were biased upwards. 

For reproductive and productive traits, the 
accuracies were slightly lower than those observed for the 
same traits in recent studies in Angus cattle (Boddhireddy 
et al., (2014), and Saatchi et al. (2013)), likely due to fewer 
available records in this study. Genomic predictions of 
visual body conformation scores were estimated for the first 
time in cattle and no comparable studies are available. The 
accuracies for visual scores were generally lower than other 
trait categories despite high BIF accuracy.  The accuracies 
of height, fat thickness, and rib-eye area traits were slightly 
lower than those observed in Angus study mentioned 
above. Increasing the marker density from 50K to HD 
resulted in only a slight improvement in accuracy (about 2 
to 3%) for production and reproduction traits.  However, 
across all traits evaluated in this study, there were no 
significant differences between prediction accuracies 
between 50K and HD, which is in agreement with the 
results in dairy cattle (VanRaden et al. (2013)). 

For a given trait, only animals with high BIF 
accuracy were used for the estimation of SNP effects, even 
though greater numbers of genotyped animals with EBVs 
were available. For instance in the category of productive 
and reproductive traits, out of 2,250 available records, only 
1,496 animals were used for the analysis. Further the EBVs 
were weighted by their respective accuracies in Bayes C 
method to ensure robust SNP effect estimates. While the 
accuracies obtained here suggests potential application of 
genomic selection for all the traits evaluated in this study, 
the predictions are most beneficial for low heritability and 
difficult to measure traits such as age at first calving, 
stayability, accumulated production, and maternal ability.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 
In this study, we report for the first time the results 

from a comprehensive analysis of genomic selection across 
several economic traits in Nelore cattle using high density 
SNP genotypes such as 50K chip and HD chip. Increasing 
the marker density from 50K to HD did not improve 
prediction accuracy. The genomic breeding values can be 
successfully integrated into genetic evaluation programs to 
compute genomically enhanced breeding values (GEBVs) 
to further increase the accuracies of breeding values to 
enable better selection decisions.   
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