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ABSTRACT: Reliability of genomic selection (GS) 
models was tested in an admixed population of Atlantic 
salmon, originating from crossing of several wild 
subpopulations. The GS models included ordinary genomic 
BLUP models (IBS-GS), using varying marker densities (1 
to 220K) and a genomic IBD model (IBD-GS) using 
genomic relationships estimated through linkage analysis of 
sparse markers (ignoring LD). The models were compared 
based on 5-fold cross-validation. The traits studied were log 
density of salmon lice on skin (logDL) and fillet color (FC), 
with respective estimated heritabilities of 0.14 and 0.43. 
IBD-GS and IBS-GS (220K) had similar reliabilities’ for 
FC, while IBS-GS was superior for logDL. The IBS-GS 
model was remarkable robust to marker density, especially 
for logDL, and outperformed pedigree-based models at all 
densities, which may be explained by admixture of the 
population, introducing long-range LD. Increasing SNP 
densities beyond 22K had limited effect for both traits.  
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Introduction 
 

Aquaculture populations are characterized by high 
male and female fecundity, typically resulting in large full-
sib families. For invasive traits, traditional aquaculture 
selection programs involve sib-testing, which has limited 
reliability under classical selection schemes. The large 
family sizes of aquaculture populations imply a substantial 
potential for within-family selection, given that EBVs can 
be calculated individually rather than family-wise. Thus, 
genomic selection (GS) models have a great potential in 
aquaculture breeding, as they provide individual EBVs even 
for non-phenotyped (albeit genotyped) selection candidates, 
based on genotypes and phenotypes of training animals 
usually from the same full-sib families. Superior 
performance of GS models for aquaculture populations has 
been documented in simulation studies (e.g., Nielsen et al. 
(2009, Ødegård et al. (2009), Ødegård and Meuwissen 
(2014)), while documentation on its suitability in real 
aquaculture data has been largely absent so far. 

 
The original idea behind GS was that it would 

capture linkage disequilibrium between marker loci and 
QTL (Meuwissen et al. (2001)). However, accuracy of GS 
has been shown to be non-zero even in absence of LD 
(Habier et al. (2007)), and the actual reliability of GS 
models can thus be explained by three types of quantitative-
genetic information contained in the genomic data (Habier 
et al., 2013): 

1) Pedigree (classical relationships)  
2) Linkage analysis (co-segregation) 
3) Population-wide linkage disequilibrium 

(LD) 
The classical pedigree relationships are reflected in 

inheritance of marker loci and thus implicitly included in 

GS using dense marker information, although pedigree is 
not used directly. Linkage analysis information is the 
deviation from independent segregation of alleles as a result 
of linkage (i.e., deviations between pedigree-based and 
linkage-analysis-based relationships), and LD is the 
statistical dependency between alleles at different loci in the 
base generation (i.e. the generation with unknown parents). 
Information on 1) and 2) can thus explain the non-zero 
reliability of GS even in absence of LD. Furthermore, in 
populations of strong relationship structure (e.g., livestock 
and aquaculture populations) LD may not even be the most 
important of these factors under GS: Wientjes et al. (2013) 
showed that the level of family relationship between 
selection candidates and the reference population had a 
higher effect on reliability of GS than LD per se.  

There are currently numerous available GS 
methodologies. The most widely used methods are GS 
models using identity-by-state (IBS) information on dense 
genome-wide SNP markers, including the so-called 
genomic BLUP and Bayesian methods (e.g., BayesA, 
BayesB, BayesC, BayesD) (Meuwissen et al. (2001), 
Habier et al. (2011)). Other methods involve use of SNP 
haplotypes (combining multiple SNPs), that also take 
identity-by-descent (IBD) information into account (Calus 
et al. (2008)). Finally, GS may be performed based on 
linkage analysis of genome-wide markers, producing an 
IBD genomic relationship matrix (IBD-GS), completely 
ignoring LD information (Villanueva et al. (2005), Luan et 
al. (2012)).  

In the following, we will focus on two of these 
methodologies for use in aquaculture breeding: Ordinary 
genomic BLUP (called IBS-GS) and IBD-GS. IBS-GS can 
be implemented either by ridge-regression on genome-wide 
marker genotypes (Meuwissen et al. (2001)) or alternatively 
based on an animal model using a realized genomic 
relationship matrix estimated from marker genotype 
similarities across the genome (Hayes et al. (2009)). The 
latter method will be used here.  

The advantage of the IBD-GS model lies in its 
ability to model realized IBD relationships more accurately 
than the pedigree alone, e.g., full-sibs (which are numerous 
in aquaculture) are no longer necessarily related by a 
coefficient of ½, but their relationships depend on the actual 
length of shared IBD chromosome segments, traced by the 
markers through linkage analysis. Compared with other GS 
methods IBD-GS has the advantage that it can be 
successfully implemented even at extremely low marker 
densities. This is due to the fact that number of 
recombinations from parent to offspring is usually low (i.e., 
on average one per Morgan), and inheritance of long 
chromosomal blocks can thus be traced accurately even 
with a few genome-wide markers. A simulation study on an 
aquaculture-like population has shown that IBD-GS works 
effectively at densities were IBS-based methods is expected 
to fail, e.g., with 10-20 SNPs/Morgan (Vela-Avitúa et al 



(2014)). Thus, there is no need for dense marker panels, 
making IBD-GS attractive for cost-effective GS 
implementation. For dairy cattle, IBD-GS models have 
been shown to give similar reliability as ordinary IBS-GS 
models with dense markers (Luan et al., 2012). Hence, for 
livestock populations with large family sizes, realized close 
relationships (factor 1) and 2) above) are essential for the 
reliability of any GS model, and GS methodology may thus 
have large potential even in absence of strong LD 
structures. Aquaculture populations typically have strong 
relationships structures, with selection candidates having 
numerous full-sibs and potentially both maternal and 
paternal half-sib groups.  

The Norwegian AquaGen Atlantic salmon 
population originates from the first family-based selective 
breeding program on Atlantic salmon, going back to the 
1970’ies, based on crossing of wild founders from 
numerous Norwegian river strains (http://aquagen.no). 
Originally, four parallel populations were created, one for 
each year class in a four year generation interval. Although 
as much as 42 river strains were originally included, 
contributions of the different rivers varied considerably, 
both between the original base populations of the four year 
classes and as result of subsequent selection. Hence, the 
original farmed populations were indeed heavily admixed. 
The year-class strains were selected for a common breeding 
goal, but kept largely separate for 7 generations until 2005, 
when they were merged into a single population. Hence, the 
AquaGen population can be regarded as an 
admixed/synthetic population comprised of genetic material 
from many wild subpopulations, which probably have been 
separated for a long time in nature. 

Admixture between genetically distinct 
populations increases LD between all loci (linked and 
unlinked) that have different allele frequencies in the 
founding populations (Pfaff et al., 2001). However, LD 
between unlinked loci will quickly be removed through 
recombinations, while LD between linked loci will be more 
persistent (Figure 1), e.g., for loci separated by 1 or 10 cM, 
respectively 90% and 35% of the admixture-induced LD 
(ALD) still remains after 10 generations, while, 
respectively 82% and 12% remains after 20 generations. 
However, admixture will not only introduce long-range 
ALD, it will also reduce the short range LD, i.e., LD 
existing in the founder populations prior to admixture. The 
short-range LD will decrease as phase associations between 
marker and QTL can differ depending of the origin of the 
chromosome segments (Thomasen et al. (2013)), and 
haplotype segments with strong LD are thus shorter in 
admixed populations (Toosi et al. (2010)). This can be 
illustrated by the following example: The frequency of a 
M1N1 haplotype is (p+κ)(q+λ) + DI in population I, where 
p+κ (q+λ) is the frequency of allele M1 (N1), expressed as 
a deviation from the across population frequencies p (q), 
with frequency deviations κ and λ, and DI is the LD in 
population I.  Similarly, (p-κ)(q-λ) + DII is the haplotype 
frequency in population II, and that in their crossbred-
offspring (F1) is , where  is the average of 
DI and DII. Thus the LD in F1 is , which comprises 
a ALD term κλ due to the crossbreeding (depends on 

frequency differences and is independent of distances 
between the loci), and the average of the old LD 
coefficients between the loci .  is probably smaller than 
either DI or DII since they may have opposite signs in the 
two populations, resulting in a reduced short-range LD in 
the admixed population.  

 

 
Figure 1: Decay of admixture-induced LD (ALD) 
between loci over generations as a function of the 
recombination rate ρ (distance in Morgans) 

 
The reduced short-range LD originating from 

founder populations may challenge accurate genomic 
prediction. Still, long-range ALD (the κλ term) can be 
effectively captured even by sparse markers, but may 
explain a limited fraction of the genetic variance, depending 
on the degree of differentiation between the founding 
populations. Hence, effectiveness of GS in admixed 
populations depends on several layers of information: 
remaining LD from the founder populations, long-range 
ALD, and the relationship structure within the existing 
population. Furthermore, the relative importance of these 
factors likely depends on genetic architecture, marker 
density, heritability and the GS methodology used.  

 
The aim of the study was to quantify the 

importance of marker density on the reliability of ordinary 
IBS-GS models and to compare these estimates with IBD-
based models completely ignoring LD, i.e., classical 
pedigree-based models and IBD-GS models. To this end, 
two traits measured on Atlantic salmon, with high and low 
heritability, using alternative GS models and marker 
densities were studied. 

 
Materials and Methods 

 
Data.  
The fish material used in the current study consists 

of second generation offspring after the merge of the 
AquaGen year-class populations. The phenotypes consisted 
of salmon lice (Lepeophtheirus salmonis) counts (LC) on 
the skin surface and fillet color (FC), machine-recorded on 
a continuous scale after slaughter. The LC was recorded in 
two separate tests on live fish during the grow-out period 
(July and October, 2012). Different fish were recorded in 
the two tests. LC phenotypes were generally highly skewed 
and counts increased with body size (i.e., with skin 
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surface). For these reasons, the LC was transformed to log 
density of lice, calculated as: 

logDL = log�
LC + 1

BW
2
3
� 

where BW is the body weight of the fish at 
recording, and BW

2
3 is a measure for the approximate 

surface of the fish as a function of body weight. In a 
preliminary analysis, the logDL of the two tests showed 
high, albeit imperfect, genetic correlation (~0.7). For 
simplicity, the current study only involves logDL 
phenotypes from the first test, which constitute the majority 
of the genotyped fish. In total, 2850 (1444 genotyped) and 
1936 (1869 genotyped) fish were phenotyped for the traits 
logDL and FC, respectively. The fish came from 157 full-
sib families. These families resulted from mating of 97 sires 
of 99 dams (i.e., 1-2 offspring groups per parent). A 
custom-made 220k Affymetrix axiom SNP-chip was used 
for genotyping. 

The fish genotyped in this study were part of a 
selection experiment aimed at selecting for high/low logDL. 
For this purpose, fish from high and low logDL families 
were more likely to be genotyped than intermediate families 
with respect to this trait. 

 
Model. The data were analyzed using univariate 

animal models, with the following general characteristics: 
𝐲 = 𝐗𝐛 + 𝐙𝐚 + 𝐞 

Where 𝐲 is a vector of phenotypes (logDL or FC), 
𝐚~N�𝟎,𝐆𝜎𝑔2� is a vector of random additive genetic effects, 
where G is a given relationship matrix (model dependent), 
and 𝐞~N(𝟎, 𝐈𝜎𝑒2) is a vector of random residuals. The fixed 
effects (b) included person (responsible for counting) by 
day for logDL, and gender of fish for FC. Common 
environmental effects of family were also tested, but these 
effects were small and not significantly different from zero 
(P>0.20) for both traits, and were thus dropped in the final 
model. 

The different models differed solely with respect 
to their specification of the relationship matrix G: 
PED: Classical pedigree-based analysis, i.e., G = A 
(numerator relationship matrix) 
IBD-GS: Identity-by-descent GS, using a linkage-based 
IBD relationship matrix for the genotyped animals. The 
matrix was calculated from a sparse marker set containing 
5590 mapped genome-wide SNP markers, using the 
LDMIP software (Meuwissen and Goddard, 2010). The 
number of mapped SNPs per chromosome varied from 52 
to 396, and relationship matrices were thus computed for 
each chromosome separately and subsequently averaged 
over chromosomes to produce G. 
IBS-GS: Identity-by-state GS (ordinary GBLUP), 
calculating the G directly from genome-wide SNP markers 
using the second  method by VanRaden (2007). Alternative 
G matrices were tested by extracting random sub-sets from 
the complete marker data set, including either a) 1100 (1K), 
b) 2200 (2K), c) 4400 (4K), d) 22 000 (22K), e) 55 000 
(55K), or f) all 220 000 (220K) SNP markers, respectively. 
For a) to d) at total of 10 non-overlapping replicates were 
generated, while e) was replicated 4 times.  

 

All models utilizing genomic information (IBD-
GS and IBS-GS) used one-step estimation of EBVs 
(Legarra et al., 2009, Christensen and Lund, 2010), 
combining relationships from genotyped and ungenotyped 
individuals into a unified relationship matrix H. The one-
step method allows mixing of genomic and polygenic 
relationship matrices as 𝐆𝛚 = (1 − 𝑤)𝐆 + 𝑤𝐀. Here, w = 
0, implying that relationships among genotyped animals 
were solely based on the respective genomic relationship 
matrices. However, the G matrices were adjusted to the 
same average rate of inbreeding and relationship as the 
numerator relationship matrix, using the ADJUST option in 
DMU (Madsen and Jensen (2014)). Identical variance 
components were used in all models, which were estimated 
with the PED model using all phenotypic data. 

 
Reliabilities of the different models were assessed 

through predictive ability, using five-fold cross-validation, 
i.e., individuals being both phenotyped and genotyped were 
randomly sampled into five validation sets, which were 
predicted one at a time, masking the phenotypes of the 
validation animals and using all the remaining phenotypes 
and genotypes as training data. Reliability was estimated as: 

𝑅𝐸𝐵𝑉,𝐵𝑉
2 =

𝑅𝐸𝐵𝑉,𝑦
2

ℎ2
 

where 𝑅𝐸𝐵𝑉,𝑦
2  is the squared correlation between 

EBVs of a given model (predicted from the training data, 
without the phenotype of the animal itself) and the recorded 
phenotype (y), while ℎ2 is the estimated heritability of the 
trait. 

 
Results and Discussion 

 
Estimated heritability for the two traits differed 

considerably, with logDL having a relatively low 
heritability (0.14±0.03), while FC had a relatively high 
heritability (0.43±0.06). 

Reliability of the PED model was slightly higher 
for FC (0.36) than for logDL (0.34). Reliability is expected 
to increase with heritability (although not linearly), but the 
relative difference in reliability between these traits was 
likely reduced, as the genotyped validation animals were 
more likely to come from selected high/low families with 
respect to logDL. Hence, between-family variation for 
logDL is expected to be inflated among the genotyped 
animals, giving an apparently higher reliability of the PED 
model based on genotyped animals for this trait. Relative 
reliabilities of the five-fold cross validation of the different 
GS models (relative to PED) are presented in Figure 2 for 
logDL and Figure 3 for FC. In general, all GS models 
outperformed the classical PED model, but the relative 
increase in reliability varied considerably between models 
and traits. For logDL, the relative increase in reliability 
using GS was substantial (up to 52% for IBS-GS with 
220K), but moderate for FC (21% for IBD-GS and 22% for 
IBS-GS with 220K). Still, the relative advantage of GS 
(compared with PED) for logDL may be underestimated 
due to the inflation of between-family variation for 
genotyped animals of this trait, as this is expected to 



especially increase the apparent performance of the PED 
model.  

Using IBS-GS, higher marker density was always 
favorable, but the relative advantage was considerably more 
expressed in FC than in logDL. For example, the relative 
increase in reliability of IBS-GS for FC was 39% when 
going from 4K to 220K, while the corresponding increase 
for logDL was only 11%. Nevertheless, IBS-GS was 
superior to PED for both traits, even at the lowest marker 
densities (1K). For both traits, going from 22K to 220K 
SNPs increased reliability by only ~1%. Hence, increasing 
SNP density beyond 22K would have little practical effect 
on selection.  

 

 
Figure 2: Relative increase in reliability of logDL 
through genomic selection models compared with the 
PED model 

 
Another striking result was the enormous 

difference between the traits with respect to relative 
reliability of the IBD-GS model. This model does not 
utilize LD, but utilizes more exact IBD relationships 
between close relatives through linkage analysis. For the 
lowly heritable logDL the IBD-GS only slightly improved 
reliability compared with PED, while for the more highly 
heritable FC, IBD-GS with sparse mapped SNP markers 
was about as reliable as IBS-GS with 220K SNP markers. 

 
The models used in this study utilize the sources of 

information contained in genomic data differently: IBS-GS 
utilizes (potentially) pedigree, linkage analysis and LD; 
IBD-GS utilizes pedigree and linkage analysis, while PED, 
by definition, utilizes the pedigree relationships only. For 
the IBS-GS model, high marker density would be needed to 
capture both short-range LD and (tiny) variations in co-
segregation. In contrast, the IBD-GS model will utilize 
linkage analysis information accurately, even at very low 
marker densities. Furthermore, the relative importance of 
the different types of information depends on several 
factors such as; structure of the dataset (i.e., number of 
close relatives in the population), historical Ne (amount of 
LD), as well as the heritability of the traits involved. In 
general, it is expected that for a lowly heritable trait, genetic 
effects estimated over larger groups of individuals, such as 
LD-associated effects (general association between marker 
genotypes and phenotypes) and pedigree relationships (i.e., 
mid-parent means) would be relatively more important for 
the reliability, while linkage-analysis based deviations from 

pedigree relationships (i.e., largely minor individual 
deviations) would be relatively more important at higher 
heritabilities. Thus, the relative advantage of the IBS-GS 
model may be largest at low heritability (e.g., logDL), 
while IBD-GS would be expected to perform relatively 
better at higher heritability (e.g., FC), which is consistent 
with results of this study.  

 

 
Figure 3: Relative increase in reliability of FC through 
genomic selection models compared with the PED model 

 
Still, the factors discussed above do not explain 

the favorable performance of IBS-GS for logDL at 
extremely low marker densities (e.g., 4K), for which limited 
LD is expected (in absence of admixture). The explanation 
may thus lie in the selection history of farmed Atlantic 
salmon; as described in the introduction, admixture from 
several distinct wild strains is likely to have introduced 
long-range LD, while simultaneously reducing the short-
range LD in the population. Simultaneous increase in long-
range LD and decrease in short-range LD will likely reduce 
the relative advantage of dense SNP data, as a relatively 
larger fraction of the available LD may be captured even by 
sparse marker panels. This may explain the good 
performance of IBS-GS for logDL at extremely low marker 
densities. Current terrestrial livestock populations may also 
be formed by admixtures of old populations, but these 
admixture events occurred longer ago and may have been 
less extreme than in Atlantic salmon. Still, some admixture 
effects on the LD structure, as reported here, may also be 
seen in terrestrial livestock species, and may contribute to 
the rather small increases observed in accuracy of GS as 
marker density increases (VanRaden et al., 2011). Still, a 
high marker density in IBS-GS will be favorable for 
utilization of linkage analysis information, which is mainly 
an advantage at higher heritabilities and strong relationship 
structures (Ødegård and Meuwissen (2014)), i.e., as seen 
with FC.  

The number of genotyped animals was rather 
limited in the current study. Genotyping larger fractions of 
the population would be expected to increase the reliability 
of GS models even further.  

Conclusion 
 
There is a substantial potential for more accurate 

selection for sib-evaluated traits in Aquaculture species 
through GS. The GS models outperformed pedigree-based 
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models even at extremely low marker densities (1K). The 
latter result may be explained by the admixed origin of the 
AquaGen Atlantic salmon population, likely reducing short-
range and increasing long-range LD in the population. 
Long-range LD may be effectively utilized even at low 
marker densities. Still, increasing SNP density was indeed 
favorable for IBS-GS, but densities beyond 22K had limited 
additional effect on the reliability for both traits. As 
expected, linkage analysis information (IBD-GS) was 
relatively more important at high heritability (FC), while 
LD and classical additive-genetic relationships (mid-parent 
means) were relatively more important at low heritability 
(logDL). 
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