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ABSTRACT: We present an equivalent equation system 
for solving single-step genomic BLUP that does not require 
separate forming or inversion of the pedigree relationship 
matrix of genotyped animals. The equation system is 
contrasted with original single-step equations and two 
augmented equation systems. Comparison was based on a 
small data having 73,579 animals of which 2,885 were 
genotyped. Number of unknowns to solve was 73,580, 
79,350, 76,465 and 144,274 by original, full augmented, 
partly augmented, and our approach, respectively. Numbers 
of non-zeros in the coefficient matrix were c. 8.9, 12.9, 
12.9, and 9.2 million, respectively. Hence, our approach 
increased substantially number of unknowns but the 
coefficient matrix remained sparse. Our equivalent system 
needed more iterations than the original single-step but was 
competitive with the augmentation methods. 
Keywords: breeding value; dairy cattle; genomic 
evaluation 
 

Introduction 
 

In coming years the genomic information has to be 
included in national breeding value evaluation along the 
traditional evaluation. This can be achieved through single-
step genomic BLUP or ssGBLUP (Aguilar et al. (2010), 
Christensen and Lund (2010)). The originally introduced 
mixed model equations (MME) for ssGBLUP involve 
inverses of two dense matrices of the size of number of 
genotyped animals. The dense matrices are genomic 
relationship matrix G and pedigree based relationship 
matrix of genotyped animals A22. In practice, need for the 
large inverted matrices in ssGBLUP obstruct using the 
method when population has many genotyped animals. The 
inversions can be avoided by augmenting the original MME 
to equivalent systems of equations (Legarra and Ducrocq 
(2010)). However, these equations have some undesirable 
properties. For example, these equivalent equations tend to 
have slower convergence by iterative methods than with the 
original MME (Legarra and Ducrocq (2010), Aguilar et al. 
(2013)). In addition, the equivalent equations still require G  
and A22 which have a size number of genotyped animals. 
Another approach is to avoid building these matrices 
altogether. Faux and Gengler (2013) used pedigree 
information directly to approximate inverse of A22.  Legarra 
and Ducrocq (2010) discussed an approach which does not 
augment the MME of ssGBLUP but still does not require 
inversion of G  and A22. This can be achieved in iterative 
solving method by preconditioned conjugate gradient 
(PCG). Each PCG iteration requires coefficient matrix 
times vector product which involves solving  A22 x = d and 
G z = d that can be solved iteratively by PCG. Hence, 
convergence characteristics of the original MME of 
ssGBLUP are unchanged. However, the iterative solving by 

PCG within PCG iteration can be computationally 
expensive. An alternative ssGBLUP approach is to model 
genetic marker effects directly for the genotyped animals 
and use genotype marker matrix without building G. Such 
approaches have been presented by for example Legarra 
and Ducrocq (2010), and Liu et al. (2013). 

 
We will concentrate on avoiding computing A22. 

The objective of this study is to present ssGBLUP that does 
not require making matrix A22 nor its inverse. Instead, the 
full pedigree based A-1 is used in an equivalent system of 
equations. We use a small data and ssGBLUP model to 
illustrate performance of the approach, and compare it with 
the equations from original single-step and two variants 
presented in Legarra and Ducrocq (2010). 

 
Materials and Methods 

 
Equivalent equations. Consider a univariate 

ssGBLUP model: 
y = Xb + Wa + e, 

where incidence matrix X relates fixed effects b, and 
incidence matrix W relates breeding values a to appropriate 
observation in vector y, and e is random residual vector. We 
assume that Var(e) = R𝜎𝑒2  where R is positive definite 
matrix such as I or diagonal matrix with weights. For the 
sake of presentation simplicity, we let R=I. In ssGBLUP, 
the covariance structure for the breeding values is Var(u) = 
H𝜎𝑎2  where  𝜎𝑎2  is the genetic variance and H has both 
pedigree (A) and genomic (G) relationship matrix 
information (Aguilar et al. (2010), Christensen and Lund 
(2010)). 

Mixed model equations for the ssGBLUP are 
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where λ equals variance ratio 𝜎𝑒2/𝜎𝑎2 . The mixed model 
equations require H-1. We divide animals to two groups: 
non-genotyped animals are in group 1, and genotyped 
animals are in group 2. All vectors and matrices can be 
partitioned by these groups. Pedigree based relationship 
matrix and its inverse can be presented as 
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 Consider the full pedigree based relationship 
matrix A-1. According to matrix algebra, we can use 



absorption of the non-genotyped animals to the genotyped 
animals to calculate inverse to A22: 
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This can be rearranged to give: 
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Substituting this equality to the equation of H-1 gives 
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We can use matrix augmentation methods as in Legarra and 
Ducrocq (2010) to form equations [2]: 
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This system of equations has no inverse of A22 but instead 
sub-matrix of A-1. Number of unknowns has been increased 
by number of non-genotyped animals. Equations by Legarra 
and Ducrocq (2010) increase number of unknowns by 
number of genotyped animals and use sub-matrix of the 
pedigree relationship matrix A22 [3]: 
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Data. Study data was based on production trait 
evaluation of Nordic Red dairy cattle. There were 73,579 
animals in the pedigree of which 2,885 were genotyped. 
Genomic relationship matrix was computed according to 
method 1 in VanRaden (2008). The only fixed effect was 
general mean because the evaluated trait was deregressed 
proof. For more information on the data set see Taskinen et 
al. (2013). 

 
Statistical analyses. We used the following 4 

equations to estimate breeding values: 
H: standard single-step mixed model equations [1] 
LD: Legarra and Ducrocq equations where the matrix 
augmentation is for both G and A22 
LDA: Legarra and Ducrocq equations [3] where the 
matrix augmentation is for A22, but G-1 is used 
SMA: our augmented system of equations [2] 

These equations were solved by two iterative methods: 
preconditioned conjugate gradient (PCG) and Bi conjugate 
gradient stabilized (BiCGSTAB) methods. These iterative 
methods are used in Octave with sparse matrix 
implementation. The Octave subroutines were from Barrett 
et al. (1994). Convergence statistic was the squared ratio of 
the norm of residual and right-hand side vectors. The four 
equation systems were iterated until convergence statistic 
reached criteria of 10-14. The approaches were contrasted by 
the number of equations, number non-zero elements in the 
coefficient matrix, estimate to the condition number of the 

coefficient matrix and number of iterations until 
convergence. 
 Condition number of coefficient matrix is a 
measure for ill-condition of matrix: the larger the condition 
number the more ill-conditioned the matrix. In general, the 
more ill-conditioned the coefficient matrix the more 
iterations are needed for convergence, and the less reliable 
are the solutions to a linear system of equations. Note that 
condition number is a property of matrix, not iterative 
method. Because of large size of the coefficient matrix, 
condition number was estimated using Octave function 
condest.  

Results and Discussion 
 

Mixed model equations. Table 1 shows that the 
original single-step method H has the least number 
equations, number of non-zero elements and the lowest 
condition number estimate. All these numbers were as 
expected. Both equations of LD and LDA had slightly more 
equations due to the small number of genotyped animals. 
However, number of non-zero elements was about 46% 
more than in the original single-step. Even worse is that the 
condition number estimate is about 15 times higher. Our 
SMA approach had the most number of equations but 
number of non-zero elements was only about 4% more than 
in the original single-step. This will translate to reasonable 
computing time by iteration because number of 
computations in the coefficient matrix times vector is 
function of number of non-zero coefficients. In practice, 
iteration on data approaches do not build the coefficient 
matrix and, hence, these numbers of non-zero elements do 
not exactly translate to number of computations in an 
iteration on data algorithm. However, they still give 
reasonable estimate for the required number of 
computations. Condition number of our system of equations 
was almost 3 times more than by the original single-step 
which means worse convergence by an iterative solver. 
Still, this number is much less than by LD and LDA. 

 
Table 1. Number of equations (NE), number of non-zero 
elements (NZ), estimated condition number (CE), 
number of iterations by PCG (NP), and number of 
iterations by BiCGSTAB (NBi) by equation system. 
System of equations was the original single-step (H), 
Legarra and Ducrocq (LD), Legarra and Ducrocq with 
G-1 (LDA), and our approach (SMA). 
 
Class¥ NE NZ CE1 NP NBi 

H 73,580 8,850,442 2.8 50 39 
LD 79,350 12,925,852 44.4 414 293 

LDA 76,465 12,914,243 36.7 178 161 
SMA 144,274 9,242,362 7.9 260 141 

1Values divided by 106. 
 
Iterative solving. PCG iteration of all equation 

systems converged towards correct solutions. However, this 
is not always guaranteed when the coefficient matrix is not 
positive definite which is the case for LD and SMA. PCG 
iteration is the preferred solving method when the 
coefficient matrix is symmetric and positive definite. 
Number of iterations to reach convergence varied much 



between the methods (Table 1). The original and the LDA 
required the lowest and the second lowest number of PCG 
iterations, respectively. SMA needed lower number of PCG 
iterations than LD. BiCGSTAB can be used for any matrix. 
When BiCGSTAB method was used, SMA and LDA 
equations needed about the same number of iterations 
which was almost 4 times more than by original ssGBLUP 
equations (Table 1). LD equations required almost 8 times 
more iterations to reach convergence.  

Figure 1 illustrates convergence by PCG iteration. 
The positive definite systems show nice convergence but 
the two non positive definite systems LDA and SMA had 
more erratic convergence. BiCGTAB iteration behaves 
better for LDA and SMA as seen in Figure 2. SMA and LD 
are now quite close in terms of convergence statistic. 

  

 
Figure 1: Convergence statistics of the equations 
systems by PCG iteration. 
 
 

 
Figure 2: Convergence statistics of the equations 
systems by BiCGSTAB iteration. 
 

 

Discussion. Number of iterations to convergence 
by SMA and LD were about the same by BiCGSTAB. 
However, SMA had almost twice as many unknowns to 
solve than LDA. Increase in number of unknowns often 
predict well increase in number of iterations but in this case 
the good structure of LDA coefficient matrix was able to 
diminish this effect. Moreover, when number of genotyped 
animals increases, number of unknowns in SMA will 
decrease but in LD and LDA it will increase. In addition, 
the SMA equations are easier to solve by iteration on data 
algorithm because the familiar rules used to make A-1 can 
be used in the augmented part of the coefficient matrix. 

In order to avoid the inverse of G, it is possible to 
transform mixed model equations such that that the 
transformed equations do not need G-1 but G (Henderson 
(1984)). There is a symmetric coefficient matrix version 
that is based on left and right multiplication of the MME by 
a matrix having G, and a non-symmetric version. We tested 
the symmetric version. However, the iterative methods 
failed to reach the quite strict convergence criterion within 
1000 iterations although solutions were quite close to true 
solutions. Hence, this system of equations may have poor 
convergence properties.  

 
Conclusion 

 
We showed an equivalent equation system for 

solving ssGBLUP that does not require separate forming or 
inversion of the pedigree relationship matrix for genotyped 
animals. In analysis of a small data, the system of equations 
had more unknowns to solve but had reasonable 
convergence properties. Coefficient matrix by the 
equivalent model had nice sparseness which means fast 
computing time in iteration on data algorithms.  
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