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ABSTRACT: Genomic evaluations are commonly based 
on models with genomic relationships. However, estimated 
genomic relationship matrices are often positive semi-
definite and ad-hoc corrections are applied to force positive 
definiteness without consideration about model properties. 
In this contribution a hierarchical quantitative genetic 
model is postulated that provides a positive definite 
genomic relationship matrix by taking into account the 
amount of genetic variance captured by estimated marker 
effects. Based on the hierarchical formulation the proposed 
model also provides a system of equations to estimate 
marker effects and breeding values jointly without setting 
up and inverting covariance matrices. Further extension 
with pedigree information is also possible. 
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Introduction 
 

Genomic information has empowered animal 
breeding with the ability to directly measure segregation of 
genomes within populations. In genetic evaluation this 
information provides more accurate estimates of genetic 
covariances among individuals than pedigree information. 
However, the initial proposal of genetic evaluation with 
genomic relationships (GBLUP; VanRaden (2008)) is based 
on an improper prior with a positive semi-definite 
covariance matrix (Rue and Held (2005)), due to the 
implicit assumption that genome-wide marker effects 
capture all additive genetic variance. Validation of 
predictions from these models clearly shows that current 
estimates of genome-wide markers do not capture all 
additive genetic variance (e.g., VanRaden (2008); Goddard 
et al. (2011)). Nonetheless, the often used ad-hoc solution 
to force genomic relationship matrix positive definite is to 
add a small value to its diagonal or to blend genomic and 
pedigree matrices without consideration about the model 
properties (Carré et al. (2013)). 

 
In this contribution a statistical model for genetic 

evaluation using genomic information is postulated based 
on a hierarchical formulation that takes into account the 
amount of variance explained by markers. This formulation 
provides proper prior with a positive definite covariance 
matrix as well as an efficient computational strategy to 
jointly estimate marker effects and breeding values and can 
be extended in hierarchical manner to include pedigree 
information as well. 

 
 
 

Materials and Methods 
 

Methods. GBLUP is based on the hierarchical 
model involving phenotype model: 

 
 𝒚 = 𝑿𝒃 + 𝒁𝒂 + 𝒆,   (1) 
 
and additive genetic model: 
 
 𝒂 = 𝑾𝒎,    (2) 
 𝑉𝑎𝑟(𝒂) = 𝑽𝑎 = 1

𝑠𝑾𝑾𝑻𝜎𝑎2,  (3) 
 
where 𝒂  is a 𝑛𝑎 × 1  vector of breeding values, 𝑾  is a 
𝑛𝑎 × 𝑛𝑚  matrix of centered marker genotypes −2𝑝𝑗 , 
1 − 2𝑝𝑗 , and 2 − 2𝑝𝑗  for genotypes 0/0, 0/1, and 1/1, 
respectively, 𝒎  is a 𝑛𝑚 × 1  vector of marker effects, 
𝑠 = 2∑ 𝑝𝑖(1 − 𝑝𝑖)

𝑛𝑚
𝑖  is a scale factor of expected variances 

of marker genotypes with 𝑝𝑖  being frequency of 𝑖-th marker 
allele, and 𝜎𝑎2  is additive genetic variance (VanRaden, 
(2008)). Alternatively marker genotypes can be scaled with 
marker specific standard deviations 𝑠𝑖 = �2𝑝𝑖(1 − 𝑝𝑖) and 
𝑽𝑎 = 1

𝑛𝑚
𝑾𝑾𝑻𝜎𝑎2. 

 
The formulation in the genetic model (2) implies 

that genome-wide markers capture all additive genetic 
variance. An alternative definition to (2) is: 
 
 𝒂 = 𝑾𝒎 + 𝒓,    (4) 
 
with prior assumptions: 
 
 𝒂|𝑾,𝒎,𝜎𝑟2 ~ 𝑁(𝑾𝒎, 𝑰𝜎𝑟2),  (5) 
 𝒎|𝜎𝑚2            ~ 𝑁(𝟎, 𝑰𝜎𝑚2 ),   (6) 
 
where 𝒓 describes the part of breeding values not captured 
by markers (the remainder) with the associated variance 
component 𝜎𝑟2  and 𝜎𝑚2  is variance of marker effects. 
Defining 𝜎𝑚2 = 𝑐𝜎𝑎2

𝑛𝑚
 and 𝜎𝑟2 = (1 − 𝑐)𝜎𝑎2 , where 𝑐  is the 

proportion of additive genetic variance captured by marker 
effects, the covariance structure of (4) is: 
 

 𝑽𝑎 = �𝑾𝑾𝑻 𝑐
𝑛𝑚

+ 𝑰(1 − 𝑐)� 𝜎𝑎2.  (7) 
 
 The inverse of (7) 𝑸𝑎 is required for inference and 
can be obtained by inversion of a 𝑛𝑎 × 𝑛𝑎  matrix 𝑽𝑎 . 
However, by recognizing the hierarchical formulation in (5-
6) this inversion can be skipped in favor of setting up joint 
inverse covariance (precision) matrix for breeding values 
and markers �𝑸𝑟,𝑚� directly (e.g., Rue and Held (2005)): 
 

 𝑸𝑟,𝑚 = �
𝑸𝑟 −𝑸𝑟𝑾

−𝑾𝑻𝑸𝑟 𝑸𝑚 + 𝑾𝑻𝑸𝑟𝑾
�, (8) 

 𝑸𝑟,𝑚 = �
𝑰 1
1−𝑐 −𝑾 1

1−𝑐

−𝑾𝑻 1
1−𝑐 𝑰𝑛𝑚𝑐 + 𝑾𝑻𝑾 1

1−𝑐

� 1
𝜎𝑎2

, (9) 



 
where the subscripts of precision matrices 𝑸𝑟,𝑚 , 𝑸𝑟 , and 
𝑸𝑚 match the subscripts of variance components in (5-6). 
The mixed model equations for estimating 𝒃, 𝒂, and 𝒎 can 
then be directly setup as: 
 

�
𝑿𝑻𝑸𝑒𝑿 𝑿𝑻𝑸𝑒𝒁 𝟎
𝒁𝑻𝑸𝑒𝑿 𝑸𝑟 + 𝒁𝑻𝑸𝑒𝒁 −𝑸𝑟𝑾
𝟎 −𝑾𝑻𝑸𝑟 𝑸𝑚 +𝑾𝑻𝑸𝑟𝑾

��
𝒃�
𝒂�
𝒎�
� = �

𝑿𝑻𝑸𝑒𝒚
𝒁𝑻𝑸𝑒𝒚
𝟎

�, (10) 

 
where 𝑸𝑒 = 𝑰 1

𝜎𝑒2
. 

 
Data. The proposed model was tested on a 

simulated data of five 1 Morgan chromosomes with 2000 
single nucleotide markers per chromosome, 300 
quantitative trait loci per chromosome with effects sampled 
from a normal distribution, and quantitative trait with 
heritability of 0.3. These chromosomes were dropped 
through a pedigree of 2 generations with each having 1,000 
individuals from 25 sires each mated to 20 dams producing 
2 offspring per mating. 

 
Analysis. In the first generation a random set of 

500 individuals had phenotypes available for genomic 
prediction of the remaining 500 nominally unrelated 
individuals in the first generation and individuals in the 
second generation that were progeny of phenotyped 
individuals in the first generation. This design allowed 
predictions to be tested for unrelated individuals as well as 
progeny of phenotyped parents. The proposed model was 
used with assumed known variances 𝜎𝑎2  and 𝜎𝑒2  equal to 
used values in simulation, while the effect of the proportion 
of variance explained by markers 𝑐  was quantified by 
performing genetic evaluations for the grid of values from 
0.01 to 0.99. All analyses were performed using either 
10,000 or 1,000 markers. The results were summarized with 
the accuracy of prediction defined as a correlation between 
the true and estimated breeding values, and the bias of 
prediction defined as a regression coefficient of true on 
estimated breeding values. 
 

Results 
 

Accuracy of estimated breeding values increased 
with the increasing 𝑐  in training individuals and reached 
maximum of 0.66 and 0.65 with the amount of genetic 
variance captured by marker effects 𝑐  equal to 0.99 and 
0.98 for 10,000 and 1,000 marker set, respectively 
(Figure 1). When predicting breeding values in non-
phenotyped progeny maximal accuracies were 0.63 and 
0.55 with substantially lower 𝑐 equal to 0.23 and 0.08 for 
10,000 and 1,000 marker set, respectively. When predicting 
breeding values in non-phenotyped unrelated individuals 
maximal accuracies were 0.53 and 0.48 with 𝑐 equal to 0.35 
for both marker sets. The difference in 𝑐  between close 
relatives (progeny) and unrelated individuals might be due 
to the different importance of linkage and linkage 
disequilibrium information for prediction. 

 
 

 
Figure 1: Accuracy of genomic evaluation for different 
groups of individuals and different number of markers 
used in relation to the proportion of variance captured 
by estimated marker effects – the largest values are 
marked with symbols 

 
Regression coefficients of true on estimated 

breeding values increased with the increasing 𝑐 in training 
individuals and reached maximum of 0.56 with 𝑐 equal to 
0.99 for both 10,000 and 1,000 marker sets (Figure 2). In 
non-phenotyped progeny and unrelated individuals bias 
decreased with the increasing 𝑐  from values around 20 
when 𝑐 was close to 0 and to values around 0.5 when 𝑐 was 
close to 1, with smaller values for the 1,000 marker set in 
comparison to the 10,000 marker set. In these two groups of 
individuals bias was close to 1 for values of 𝑐 around 0.45 
for the 10,000 marker set and for values of 𝑐 around 0.37 
for the 1,000 marker set. 

 
Discussion 

 
The results show that estimated marker effects did 

not capture all the genetic variance in the simulated data 
and that for prediction of non-phenotyped individuals small 
to intermediate values of 𝑐  gave higher accuracies than 
values close to 1, which are commonly used. Regression 
coefficients of true on estimated breeding values were also 
close to 1 for the intermediate range of 𝑐  values for this 
simulation. While the simulation used in this study was 
quite small obtained accuracies match well the theoretical 
expectations (Daetwyler et al. (2008); results not shown). 
Larger dataset would implicitly enable more accurate 
estimates of markers and therefore more genetic variance 
captured. This is exactly why the additional residual 𝒓 was 
included in the model to allow for estimation errors and 
plays the same role as the Mendelian sampling residual in 
pedigree models. The expectation 𝑾𝒎 is on the other hand 
equivalent to parent average (Thompson (1977)), though 
there is no recursive structure with genomic data as there is  



 

 
Figure 2: Bias of genomic evaluation for different 
groups of individuals and different number of markers 
used in relation to the proportion of variance captured 
by estimated marker effects – values the closest to 1 are 
marked with symbols 

 
in pedigrees. The hierarchical model presented in this study 
is also equivalent to the work of Goddard et al. (2011) who 
modified genomic relationship matrix to account for errors 
in estimating genomic relationships, which implicitly 
defines model (4). 

 
The proposed model is computationally more 

stable because the derived relationship matrix (7) is positive 
definite when 𝑐  is smaller than 1. In addition this model 
provides a system of equations where both markers and 
breeding values can be estimated jointly without the need to 
setup and invert any covariance matrices. This is possible, 
due to the hierarchical formulation (5-6), which is an analog 
of hierarchical formulation of pedigree relationship matrix 
(Henderson (1976)). This system of equations is however 
larger and denser than usual due to dense matrix 𝑾. We 
also attempted to derive inverse 𝑸𝑎  directly using matrix 
inversion lemma of (7) for use in a system of equations 
without marker effects. However, that would require 
inverse of a 𝑛𝑚 × 𝑛𝑚 matrix (results not shown), which is 
computationally more demanding than inverting 𝑽𝑎  when 
the number of individuals is smaller than the number or 
markers. Until then a suggested approach is to use system 
(10) or to invert matrix 𝑽𝑎. 

 
Following the hierarchical formulation akin to a 

model with genetic groups Gengler et al. (2012) proposed 
the same type of a model as in (4), but with a combination 
of genomic and pedigree information, i.e., the single-step 
approach, and also noticed the benefit of jointly estimating 
breeding values and marker effects without the need to 
setup and invert covariance matrices. Their approach 

however involves the non-hierarchical formulation of joint 
pedigree and genomic priors that requires setting up and 
inverting pedigree relationship matrix for genotyped 
individuals. We have derived a quantitative genetic model 
with hierarchical formulation of both pedigree and genomic 
information for several common patterns of genotyped sets 
of individuals by merging the model presented here and the 
approach of Carré et al. (2013), which is beyond the scope 
of this contribution. 

 
Variance components were assumed known in this 

work and need to be estimated in real applications, which 
might prove challenging as there is potential confounding 
between the 𝒓 and 𝒆 terms. This confounding is the same as 
confounding between the Mendelian sampling residual in 
pedigree model and phenotype residual if only own 
performance records are available and pedigree is not very 
informative or even missing in the limit. However, with 
pedigree model the amount of genetic variance captured by 
the expectation (parent average) and residual (Mendelian 
sampling) is fixed by definition, while this is a free 
parameter 𝑐 in the proposed model. The required structure 
of data to be able to estimate all three variance parameters 
(𝜎𝑒2,𝜎𝑎2, and 𝑐)  needs to be found. An alternative is to 
estimate 𝑐  using the theory from Goddard et al. (2011). 
However, in the presented simulation an estimate of 𝑐 from 
the effective population size and genome size gives 0.98 
(results not shown), which is far from the optimal 𝑐 values 
found for prediction sets. More work is needed in this area. 
For pedigreed populations a combination of genomic and 
pedigree information might provide enough structure to 
estimate these variance parameters. 

 
Conclusion 

 
In summary this contribution presented a 

hierarchical quantitative genetic model using genomic 
information that takes into account amount of additive 
genetic variance explained by markers. This formulation 
provides proper prior with a positive definite covariance 
matrix and favorable computational properties to estimate 
marker effects and breeding values jointly. 
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