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ABSTRACT: Additive and dominance variance of 
weaning weight (WWT) and post weaning weight (PWWT) 
for purebred Merinos and crossbreds of Merino and other 
breeds were estimated. Additive and dominance genomic 
relationships were calculated based on 48,599 SNP marker 
genotypes. Dominance variation was 3.61% and 5.58% of 
phenotypic variance for WWT and PWWT, respectively in 
purebreds and 9.2% and 17.1% for WWT and PWWT in 
crossbreds. The likelihood of the model was improved by 
including dominance effects, particularly for crossbred data. 
The accuracy of within breed genomic breeding value based 
on prediction from purebreds was similar for additive and 
additive plus dominance model but showed between 0.3% 
and 2.1% increase based on prediction from crossbreds and 
using additive plus dominance model. Fitting both additive 
and dominance effects of marker genotypes provides either 
similar or higher GBV accuracy depending on the value of 
dominance variance. 
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Introduction 
 

Genomic prediction in animal breeding involves 
the prediction of breeding value of genotyped selection 
candidates based on phenotypic and genotypic data from a 
reference population. Such a reference population could 
exist of many breeds, especially in beef cattle or sheep 
breeding, and this could provide some challenges. 
Moghaddar et al. (2014) showed that genomic prediction 
for a particular breed could become less accurate when the 
reference population contains data on crossbred or other 
breeds. One way to improve prediction from multi-breed 
reference populations is to account for dominance effects. 
In animal breeding the effect of dominance, as a non-
additive genetic effect, is usually ignored in genetic 
evaluation of selection candidates, because a reliable 
estimate of dominance variance from pedigree information 
needs large family size of particular type (e.g. large full-sib 
families), and computations are complex (Misztal et al, 
(1998)). Furthermore, for genetic improvement of 
quantitative traits we are mainly interested in the additive 
genetic effect. 

 
The statistical estimation of additive genetic 

effects and hence breeding values is based on allele 
substitution effects (Falconer (1981)). Allele substitution 
effects depend on genotypic values and allele frequencies, 
and part of the dominance effects are incorporated in the 
estimates of additive genetic effects, particularly in more 

extreme allele frequencies (Falconer (1981); Hill et al 
(2008)).  

 
Genomic prediction is based on estimating effects 

of genotypes at single nucleotide polymorphism (SNP) 
marker loci covering whole the genome, with part of them 
in linkage disequilibrium with quantitative trait loci (QTL). 
Because of our knowledge on SNP genotypes, we have a 
much better handle on estimating dominance effects 
compared to using pedigree relationships. This has made it 
possible to estimate dominance genetic variance based on 
statistical methods, using covariance between animals 
predicted from genomic data.  The paper aims to estimate 
dominance variance for some production traits in Australian 
sheep based on genomic data and to evaluate whether 
accounting for dominance effects will have an effect on the 
accuracy of predicting additive genetic effects. We will use 
data on purebred Merino sheep as well as crossbreds of 
Merino and other breeds to predict breeding values of 
purebred rams.    

 
 

Materials and Methods 
 

Phenotypes. We used 4,123 and 4,099 records for 
purebreds and 3,978 and 4,173 records for crossbreds for 
WWT and PWWT, respectively.. The animals were born 
between 2008 and 2011 in the Information Nucleus 
Research Flock (INF) of the Sheep Cooperative Research 
Centre (Armidale, Australia). The INF consisted of 9 flocks 
located across different sheep production regions in 
Australia. The flocks are linked to each other by using 
~50% of common sires through artificial insemination. 
Purebred animals were Merinos and the breed composition 
of crossbred animals was 39.9% Merino, 24.9% Border 
Leicester, 22.6% Poll Dorset, 9.2% White Suffolk and 3.4% 
other breeds. More information on design of INF flocks is 
available in Van der Werf et al. (2010).  

 
Genotypes. Animals were genotyped using the 

50K Ovine SNP chip (Illumina Inc., SanDiego, CA, USA). 
The total number of SNP genotypes of this chip was 54,241 
which decreased to 48,599 after applying quality control on 
genotypes. More information on quality control is available 
in Moghaddar et al. (2013). After quality control the 
missing genotypes were imputed using Beagle software 
(Browning, (2007)). 

 
Statistical methods. The following linear mixed 

model was used for estimation of variance components.  



𝑦 = 𝑋𝑏 + 𝑍𝑎𝑎 + 𝑍𝑑𝑑 +  𝑊𝑤 +  𝑍𝑄𝑞 + 𝑒             
In this model y is the vector of phenotypes, b is the vector 
of fixed effects, a is the vector of random additive genetic 
effects, d is the vector of random dominance effects, w is 
the vector of random maternal effects, q is the vector of 
breed effects.  X, Za, Zd , and W are incidence matrices that 
relate effects to phenotypes. Q is a breed proportions matrix 
and e is a vector of random residual effects. a, d, w and e 
are normally distributed as: 
𝑎 ~ 𝑁(0, 𝛿𝑎2𝐺) ,  𝑑 ~ 𝑁(0, 𝛿𝑑2𝐷) , 𝑤 ~ 𝑁(0, 𝛿𝑤2 )  and 
𝑒 ~𝑁(0, 𝐼𝛿𝑒2),   respectively and G and D are additive and 
dominance genomic relationship matrices. The fixed effects 
of the final model were birth type, rearing type, gender, age 
at measurement, and cohort of flock x birth year x 
management group. Breed proportion was fitted as a 
random effect. Analysis of the data was based on fitting 
additive effect (A) or additive and dominance effect (A+D). 
A and D are the summation of additive and dominance 
effect at all markers across the genome. ASReml software 
(Gilmour, (2009)) was used for analysis of the data. . 

 
Additive and dominance relationships. The 

additive genetic relationship matrix (G) was calculated 
based on VanRaden (2008) as below:  

          𝐺 = 𝑍𝑍′/ 2∑�𝑝𝑗��1 − 𝑝𝑗�                                   
In this equation Z is a matrix of the size n x m (the number 
of individuals by the number of SNPs) and elements are 
equal to (−2𝑝𝑗) , (1−2𝑝𝑗) and  (2−2𝑝𝑗)  for genotypes 
(A1A1), (A1A2) and (A2A2) of the jth SNP marker genotype 𝑝𝑗 
is the frequency of the second  allele (A2) for the jth SNP 
genotype. The dominance genomic relationship matrix (D) 
was calculated according to the dominance effects at each 
locus. This has been presented by Vitezica et al (2013), 
Wang et al. (2013) and Nishio & Satoh. (2014) as follows: 

               𝐷1 = 𝑊𝑊′/ 2∑(𝑝𝑗𝑞𝑗)                                        
In this equation W is a matrix   with elements (−2𝑞𝑖2) if the 
genotype i of individual j is (A1A1), (2𝑝𝑖𝑞𝑖) if the genotype 
is (A1A2) and  (−2𝑝𝑖2)if the genotype is (A2A2). pj and qj are 
allele frequency at the jth locus. 

 
Accuracy of genomic prediction. To test the 

accuracy of genomic prediction the genomic breeding value 
(GBV) was calculated for genotyped purebred sires based 
on the GBLUP solution. The accuracy was evaluated as the 
correlation between GBV and EBV in a bivariate analysis. 
The EBV of those validation rams was generally based on 
progeny test information and calculated from a separate 
analysis that was ignoring phenotypes of animals used in 
the genomic prediction reference population.  

 
 

Results and Discussion 
 

Summary of phenotypic data. The number of 
phenotypes in purebred animals was 4,123 and 4,099 for 
WWT and PWWT, respectively, and in crossbred animals 
was 3,987 and 4,173 for WWT and PWWT, respectively. 
The phenotypic mean and standard deviation of WWT and 
PWWT was higher in crossbreds than in purebreds; (28.0 

±7.73) vs 24.48 ±5.25) for WWT and (45.61±7.91 vs 
37.11±7.72) for PWWT, respectively. 

 
Variance components. Table 1 shows the 

estimated variance for additive, dominance and residual 
effect. It also shows the heritability   and the ratio of 
dominance variance to phenotypic variance for purebred 
and crossbred animals. The maternal effect variance 
estimate changed slightly between two fitting models and 
was lower in the A+D model. This variance is not reported 
in Table 1. The results show the ratio of dominance to 
phenotypic variance for purebred Merinos was 3.61% and 
5.58% for WWT and PWWT, respectively. Those values 
were higher in crossbreds and were 9.21% and 17.12% for 
WWT and PWWT, respectively. A higher dominance 
variance component was expected for crossbreds and could 
be attributed to the higher heterozygosity and the more 
heterogeneous genetic structure of crossbreds compared to 
purebred animals. In both purebred and crossbred data the 
dominance variance was higher for PWWT, which is 
because of overall higher genetic variance in PWWT than 
WWT. The results also showed the residual variance was 
always lower when both additive and dominance effect 
were fitted in the model, more importantly in crossbred 
data. The Likelihood Ratio Test (LRT) between additive 
model and additive plus dominance model was highly 
significant in crossbred data (p<0.01) but was not 
significant in purebred data. The results also showed that 
the additive plus dominance model gives a reduced genetic 
group variance, which indicates that part of the dominance 
variance would otherwise be   absorbed by genetic group 
effects. 

 
Table 1. Variance component, narrow sense heritability 
and ratio of dominance variance to phenotypic variance 
in purebred and crossbred data. 
 

Trait Mod V(A) V(D) V(R) h2
A V(D)/V(P) 

WWT 
(p) 

A 2.89 
(0.48) --- 6.04 

(0.35) 
0.23 

(0.03) --- 

A+D 2.88 
(0.41) 

0.40 
(0.56) 

5.70 
(0.59) 

0.23 
(0.03) 

0.036 
(0.04) 

PWWT 
(P) 

A 7.94 
(0.80) --- 9.65 

(0.62) 
0.36 

(0.04) --- 

A+D 7.95 
(0.80) 

1.05 
(0.96) 

8.73 
(1.02) 

0.36 
(0.04) 

0.056 
(0.04) 

WWT 
(C) 

A 2.47 
(0.55) --- 9.82 

(0.50) 
0.15 

(0.03) --- 

A+D 2.50 
(0.54) 

1.40 
(0.86) 

8.24 
(0.78) 

0.16 
(0.03) 

0.092 
(0.05) 

PWWT 
(C) 

A 12.20 
(1.27) --- 13.08 

(0.85) 
0.32 

(0.04) --- 

A+D 11.66 
(1.27) 

5.94 
(1.38) 

8.76 
(1.21) 

0.32 
(0.04) 

0.172 
(0.04) 

Mod = model, WWT = weaning weight, PWWT = post weaning weight, 
(P) = refers to purebred animals. (C) = refers to crossbred animals. A = 
additive effect. D = dominance effect. P = phenotypic variance. 
1 = Numbers in parenthesis shows the standard error of estimates. 

 
 
Table 2 shows the GBV accuracy for the additive 

and the additive plus dominance model for purebred and 
crossbred data. The accuracy of GBV based on an additive 
model or an additive plus dominance model was similar in 



purebred animals. The estimation of dominance variance in 
purebred data was also low. For crossbred data the accuracy 
of GBV from fitting both additive and dominance effect 
increased between 0.3% and 2.1%. This coincides with 
higher dominance variation in crossbred data. The extra 
accuracy of including dominance effects in the model was 
observed in all cases, but was low and statistically not 
significant (p<0.05). One explanation is that the additive 
genetic variance will absorb a lot of the variation due to 
dominance effects. This has been pointed out by Falconer 
(1981) and Hill et al. (2008). However, the amount of non-
additive genetic variance could be different across different 
traits and some studies have reported substantial non-
additive genetic variance in some polygenic traits (e.g. 
Gengler et al. (1997); Palucci et al. (2007)). Furthermore, 
dominance effects can also mask additive genetic 
differences, especially when they are expressed in 
crossbreds, and this might explain that accounting for them 
improves the accuracy of genomic prediction of additive 
genetic effects. The presented results here are still 
associated with considerable standard error, and more 
analysis on more traits and larger datasets is required to 
confirm these findings.  

 
Table 2. Accuracy of GBV for additive and additive plus 
dominance model based on purebreds or crossbreds 
reference population.  

Trait Mod P.B Ref.Pop  C.B Ref.Pop 
Mer Mer BL PD WS 

WWT 
A 0.462 0.357 0.453 0.264 0.234 

A+D 0.463 0.376 0.461 0.271 0.244 

PWWT 
A 0.550 0.462 0.435 0.273 0.183 

A+D 0.551 0.483 0.438 0.286 0.192 

Mod = model, WWT = weaning weight, PWWT = post weaning weight, 
(A) additive model. (A+D) additive plus dominance model. Mer = Merino, 
BL = Border Leicester, PD = Poll Dorset, WS = White Suffolk, P.B Ref-
Pop = purebred reference population C.B Ref.Pop = crossbred reference 
population. 
 

The estimated dominance variance is affected by 
marker allele frequencies (Falconer, (1981)). It is expected 
that the allele frequency of QTL are more extreme 
compared to SNP marker allele frequency. Therefore, 
analysis with denser marker data, or based on genome 
sequence data could give better estimates of dominance 
variance and its effect on genomic prediction accuracy.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 
This study estimated dominance variation of 

weaning and post weaning traits based on genomic 
information in real purebred and crossbred sheep data. The 
dominance effect was significantly higher in crossbred data 
compared to purebred data. Fitting an additive plus 
dominance effect model provides similar or higher accuracy 
of genomic breeding value, particularly for traits with 
higher dominance variation, which is more important in 
crossbreeding or mate selection programs. 
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