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ABSTRACT: Conventional pedigree- and performance-
based national evaluations typically involve hundreds of 
thousands if not millions of animals.  But only a small 
proportion of individuals with performance records have 
typically been genotyped to date.  Bayesian methods have 
been widely adopted for analysis of these genotyped 
individuals, but implementation typically involves two-step 
approaches to blend genomic predictions on genotyped 
individuals with information from conventional analyses for 
non genotyped animals. Here we present a Bayesian 
approach that extends commonly-used methods including 
BayesA, BayesB, BayesC, and BayesCπ, to a single step 
method using observations from all genotyped and non 
genotyped individuals.  Unlike single-step GBLUP, our 
approach does not require direct inversion of any matrices 
and is well suited to parallel computing approaches. 
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Introduction 
 

Genomic prediction uses marker genotypes to 
improve the accuracy of prediction.  This contrasts with 
conventional approaches for prediction of breeding merit 
that only utilize pedigree and performance information.  
Pedigree and performance-based approaches have evolved 
over the last half century and typically exploit Henderson’s 
mixed model equations (MME) (Henderson, 1984), sparse 
matrix computations, direct construction of the inverse 
relationship matrix (Henderson, 1976; Quaas, 1976), 
iteration on data (Schaeffer and Kennedy, 1986), 
preconditioned conjugate gradient (PCG) (Berger et al, 
1989; Stranden and Lidauer, 1999), and approximation of 
diagonal elements of the inverse coefficient matrix (Harris 
and Johnson, 1998) to estimate prediction error variance. 

Genomic prediction simultaneously fits many 
markers and was pioneered by Meuwissen et al. (2001) to 
exploit marker genotypes and individual performance 
information without requiring or using pedigree 
information.  That paper marked the start of widespread 
adoption of Bayesian approaches that utilize Markov chain 
Monte Carlo (MCMC) techniques, including Gibbs 
sampling and Metropolis-Hastings algorithms (e.g. 
Fernando and Garrick, 2013).  Genomic prediction could be 
readily extended to exploit performance information on non 
genotyped relatives by using deregressed breeding values in 
weighted analyses in place of individual information 
(Garrick et al., 2009), or in the special case of non 
genotyped offspring of genotyped parents, using reduced 
animal model approaches as in Wolc et al. (2012).  

Routine application of genomic prediction should 
use all available pedigree and performance information.  
Van Raden et al. (2009) devised a selection index approach 
to combine genomic predictions (DGV) and conventional 
pedigree predictions (EBV) to obtain genomic enhanced 
breeding values (GEBV) in a two-step analysis.  A single-
step analysis would be operationally advantageous and 
avoid the need for simplifying assumptions.  A single-step 
analysis that did not use Bayes theorem and was based on a 
model that fitted breeding values was proposed by Misztal 
et al. (2009) but required brute-force inversion of a matrix 
of order equal to the number of animals with performance 
information.  Legarra et al. (2009) proposed a modification 
to the assumed variance-covariance among non genotyped 
animals and between genotyped and non genotyped animals 
based on genomic relationships among genotyped relatives.  
Aguilar et al. (2010) recognized that the Legarra et al. 
(2009) variance-covariance matrix could exploit the 
pedigree-based inverse relationship matrix, allowing the 
brute-force matrix inversion to be reduced to two smaller 
matrices of order equal to the number of genotyped 
individuals. Some practical problems with that 
implementation remain, and a strategy to overcome these 
based on a Bayesian framework applied to the model 
proposed in Legarra et al. (2009) are the subject of this 
paper.  This strategy does not require any brute-force 
inversion, extends from single-step GBLUP to the entire 
family of Bayesian models for genomic prediction, and 
exposes a solution to the problem of choosing among 
alternative approaches to center the genomic relationship 
matrix. 

 
Model 

 
The derivation of the computing strategy begins 

with definition of the model.  The usual model equation 
(e.g. Henderson, 1984) would be: 

𝒚 = 𝑿𝒃 + 𝒁𝒖 + 𝒆, 
where y is a vector of phenotypic observations, b is a vector 
of unknown fixed effects, u is a random vector of breeding 
values, e is a vector of random residual effects, and X and Z 
are incidence matrices defining the particular fixed effects 
and breeding values that pertain to the phenotypic 
observations.  In the simplest single trait model with 
homogeneous genetic and residual variances and 
uncorrelated residual effects, var(u)=A𝜎𝒖𝟐, and var(e)=I𝜎𝒆𝟐, 
where A is the additive or numerator relationship matrix. 

Now partition the vector of breeding values 
𝒖! = 𝒖𝒈! 𝒖𝒏! , into genotyped animals (subscript g) and 
non genotyped animals (subscript n), and recognize that all 
other model elements can be similarly partitioned.   



 The model for genotyped animals can be any of 
BayesA (Meuwissen et al., 2001), BayesB (Meuwissen et 
al., 2001), BayesC (Kizilkaya et al., 2010), BayesCπ 
(Habier et al., 2011), etc.  Those models, following 
Falconer and Mackay (1996), define the breeding value as 
the sum of average effects of alleles, which in matrix 
notation is equivalent to 𝒖𝒈 = 𝑴𝒈𝜶 , where 𝑴𝒈  is the 
matrix of marker genotypes observed on the genotyped 
individuals and 𝜶 is the vector of allele substitution effects.  
Substituting this into the usual model equation gives: 

𝒚𝒈 = 𝑿𝒈𝒃 + 𝒁𝒈𝑴𝒈𝜶 + 𝒆𝒈, [1] 
where premultiplication of the genotype matrix by 𝒁𝒈 is 
required because some genotyped individuals may not have 
a phenotypic observation. 

Specifying the model for non genotyped animals 
involves recognizing that the breeding value for non 
genotyped animals can be decomposed into two orthogonal 
components.  This same concept was exploited by Quaas 
and Pollak (1980) in their derivation of the reduced animal 
model, whereby the breeding value for non parents was 
partitioned into a part that could be predicted from ancestral 
relatives, namely the parent average, and a part independent 
of ancestors, namely the Mendelian sampling component.  
In our case, the part of the breeding value of non genotyped 
animals that can be predicted from the breeding values of 
all their genotyped relatives, including both ancestors and 
descendants, will be denoted by the vector 𝒖𝒏 𝒖𝒈 , 
representing 𝒖𝒏 given 𝒖𝒈. The part of the breeding value of 
non genotyped animals that cannot be explained by 
relatives is the residual polygenic effect or deviation of the 
breeding values 𝒖𝒏 from 𝒖𝒏 𝒖𝒈, which we will denote as 
𝝐𝒏 = (𝒖𝒏 − 𝒖𝒏 𝒖𝒈), so that 

𝒖𝒏 = 𝒖𝒏 𝒖𝒈 + 𝝐𝒏. [2] 
Now 𝒖𝒏 𝒖𝒈 is the matrix regression of 𝒖𝒏 on 𝒖𝒈, namely 

𝒖𝒏 𝒖𝒈 = 𝑨𝒏𝒈𝑨𝒈𝒈!𝟏𝒖𝒈. [3] 
Substituting [2], [3], and 𝒖𝒈 = 𝑴𝒈𝜶 in the usual 

model equation for non genotyped individuals gives 
 𝒚𝒏 = 𝑿𝒏𝒃 + 𝒁𝒏𝒖𝒏 + 𝒆𝒏 
       = 𝑿𝒏𝒃+𝒁𝒏𝑨𝒏𝒈𝑨𝒈𝒈!𝟏𝒖𝒈+𝒁𝒏𝝐𝒏 + 𝒆𝒏 
       = 𝑿𝒏𝒃+𝒁𝒏 𝑨𝒏𝒈𝑨𝒈𝒈!𝟏𝑴𝒈 𝜶+𝒁𝒏𝝐𝒏 + 𝒆𝒏 
       = 𝑿𝒏𝒃+𝒁𝒏𝑴𝒏𝜶+𝒁𝒏𝝐𝒏 + 𝒆𝒏,  [4] 

where 𝑴𝒏 = 𝑨𝒏𝒈𝑨𝒈𝒈!𝟏𝑴𝒈 is the matrix of genotypes on non 
genotyped animals, “imputed” by regression of non 
genotyped animals on their genotyped relatives.  For the 
remainder of this paper we will refer to this regression as 
imputation, but it must be recognized our derivation will 
not be exact if other methods of imputation are used. 

This formulation in [4] suggests a computational 
approach that involves fitting a marker effects model for all 
animals, whether genotyped or not.  First, matrix 𝑴𝒏 must 
be imputed based on pedigree information and 𝑴𝒈.  This 
can be done separately for each locus, i.e. imputing one 
column of 𝑴𝒏 from one column of 𝑴𝒈, which is perfectly 
suited to parallel computing.  This calculation does not 
require creation or storage of either 𝑨𝒏𝒈 or 𝑨𝒈𝒈!𝟏, as the i-th 
column 𝒎𝒊_𝒏 of 𝑴𝒏 can be obtained by solving 𝑨𝒏𝒏𝒎𝒊_𝒏 =

−𝑨𝒏𝒈𝒎𝒊_𝒈, where 𝒎𝒊_𝒈 is the i-th column of 𝑴𝒈. These 
equations only involve sparse submatrices of 𝑨!𝟏. 

The mixed model equations for simultaneously 
obtaining solutions for 𝜶 and 𝝐𝒏 are 
𝑿′𝑿 𝑿′𝒁𝑴 𝑿𝒏! 𝒁𝒏
𝑴′𝒁′𝑿 𝑴!𝒁!𝒁𝑴 + 𝝋 𝑴𝒏𝒁𝒏! 𝒁𝒏
𝒁𝒏! 𝑿𝒏 𝒁𝒏! 𝒁𝒏𝑴𝒏 𝒁𝒏! 𝒁𝒏 + 𝑨𝒏𝒏𝜆

𝒃
𝜶
𝝐𝒏

𝑿′𝒚
𝒁′𝒚
𝑴𝒏
! 𝒚𝒏

  [5] 

where X, Z, M and y contain the partitioned submatrices or 
vector for both genotyped and non genotyped individuals, 𝜆 
is the scalar ratio 𝜎𝒆𝟐 𝜎𝒖𝟐 and 𝝋 is a diagonal matrix whose 
elements vary according to the nature of the model assumed 
for marker effects;  in BayesC, the elements are all 𝜎𝒆𝟐 𝜎𝜶𝟐, 
whereas in models like BayesA, the elements are locus 
specific. After solving the effects in [5], the EBV for all 
genotyped animals are 𝒖𝒈 = 𝑴𝒈𝜶 and the EBV for non 
genotyped animals are 𝒖𝒏 = 𝑴𝒏𝜶 + 𝝐𝒏. 

Inspection of the equations in [5] shows that when 
all animals are genotyped, the third row and third column 
can be deleted, leaving equations identical to those that 
form the basis of commonly used Bayesian approaches such 
as BayesA, BayesB and BayesC.  When no animals are 
genotyped, the second row and second column can be 
deleted, leaving equations identical to those used in 
conventional genetic evaluation that incorporates only 
pedigree and performance information. 

Matrix M is dense and will be a large matrix to 
store for a population of many individuals, but it will be no 
larger than would be the case if the entire population was 
genotyped. Matrix 𝑴′𝒁′𝒁𝑴 in the coefficient matrix of [5] 
is also dense, but its order is limited to the number of loci in 
M.   

One approach to solving the equations in [5] is to 
absorb the 𝝐𝒏 equations, which can be done provided 𝜆 is 
known, sample or solve the marker effects, and then sample 
or solve 𝝐𝒏  conditional on the marker effect MCMC 
samples themselves or their posterior means.  This 
approach reduces memory requirements, as 𝑴 need not be 
stored in its entirety, and separate solution of marker effects 
and 𝝐𝒏  can be done in parallel.  If this was done in a 
Bayesian approach using Gibbs sampling and assuming 𝜆 is 
unknown, the absorption would have to be repeated for 
each sample value of 𝜆. 

The equations could be solved conventionally if all 
variance parameters were known, for example using PCG, 
or solutions could be obtained using a Bayesian MCMC 
approach, which would allow simultaneous estimation of all 
variance components, and would allow mixture models 
(e.g. BayesB, BayesC) for the locus effects in 𝜶.  The 
MCMC approaches include single site or block Gibbs 
strategies.  An advantage of MCMC approaches is that the 
entire posterior distributions of effects can be obtained, 
which allows direct computation of prediction error 
variances (or reliabilities) for solutions or for linear 
functions of solutions, such as EBV. 

In the special case where diagonal elements of 𝝋 
are all 𝜎𝒆𝟐 𝜎𝜶𝟐, and 𝜎𝜶𝟐 = 𝜎𝒖𝟐/𝑘2𝑝𝑞, where k is the number 
of marker loci in M, 𝑝 and 𝑞 are the mean frequencies of 
the alternate alleles, and with 𝜎𝒆𝟐 and 𝜎𝒖𝟐  known, then the 



resulting EBV are identical to those obtained from single-
step GBLUP (Fernando et al., 2014), provided 𝑴𝒈𝑴𝒈

!  is 
full rank, except that no brute-force matrix inversions are 
required.  If there are more animals than markers, or if 𝑴𝒈 
is centered using mean allele frequencies in genotyped 
individuals, then 𝑴𝒈 does not have full row rank and some 
approximation is required to use the computing approach of 
Aguilar et al. (2010).  In contrast to the approach of Aguilar 
et al. (2010), the computing effort in [5] is reduced rather 
than increased as more animals are genotyped. 

In conventional evaluation without group effects, a 
base population of founders, comprising animals with 
unknown parents, define the individuals for which variance 
components are estimated.  Thus, marker covariates must 
be defined in relation to these founder animals in order to 
obtain consistency between the base defined by the 
numerator and the genomic relationship matrices.  
However, genotypes are typically not available on the 
founder animals and the marker covariates are centered 
using mean allele frequencies in the genotyped individuals. 

In Bayesian regression models with all animals 
genotyped, the marker effect solutions are invariant to the 
approach used to center the marker covariates.  This is 
easily demonstrated as follows.  Centering involves 
subtracting some constant, say c, from elements of a 
particular column of 𝑴𝒈.  In matrix notation, a vector c 
comprises all these constants and the centered covariate 
matrix 𝑴𝒈

𝒄 = 𝑴𝒈 − 𝟏𝒄′, where 1 is a vector of 1’s.  The 
effect of using 𝑴𝒈

𝒄  in place of 𝑴𝒈 can be seen by starting 
with model equation [1], simplified to comprise only an 
overall mean as fixed effect, then adding and subtracting 
𝒁𝒈𝟏𝒄′𝜶, and defining 𝑡 = 𝒄′𝜶 to give 

𝒚𝒈 = 𝟏𝜇 + 𝒁𝒈𝑴𝒈𝜶 + 𝒆𝒈, 
                                = 𝟏𝜇 + 𝒁𝒈𝟏 𝒄′𝜶 + 𝒁𝒈 𝑴𝒈 − 𝟏𝒄′ 𝜶 + 𝒆𝒈 

          = 𝟏 𝜇 + 𝑡 +𝒁𝒈 𝑴𝒈 − 𝟏𝒄′ 𝜶 + 𝒆𝒈 
          = 𝟏𝜇∗+𝒁𝒈𝑴𝒈

𝒄𝜶 + 𝒆𝒈.  [6] 
Model equation [6] does not have the same first and second 
moments as [1], so these two models are not equivalent 
(Henderson, 1984).  However, these two models give 
identical rankings of EBV, provided a fixed general mean is 
included in the models (Stranden and Christensen, 2011). 

Now consider the implication of using 𝑴𝒈
𝒄  in place 

of 𝑴𝒈  in [4], the model equation for non genotyped 
animals.  Adding and subtracting a vector in order to 
substitute 𝑴𝒈 for 𝑴𝒈 − 𝟏𝒄′ results in 

𝒚𝒏 = 𝟏𝜇+𝒁𝒏 𝑨𝒏𝒈𝑨𝒈𝒈!𝟏𝑴𝒈 𝜶+𝒁𝒏𝝐𝒏 + 𝒆𝒏 
= 𝟏𝜇+𝒁𝒏𝑨𝒏𝒈𝑨𝒈𝒈!𝟏𝟏 𝒄′𝜶 + 𝒁𝒏 𝑨𝒏𝒈𝑨𝒈𝒈!𝟏 𝑴𝒈 − 𝟏𝒄′ 𝜶+𝒁𝒏𝝐𝒏 + 𝒆𝒏 

= 𝟏𝜇+𝒁𝒏𝑨𝒏𝒈𝑨𝒈𝒈!𝟏𝟏𝑡 + 𝒁𝒏 𝑨𝒏𝒈𝑨𝒈𝒈
−𝟏𝑴𝒈

𝒄 𝜶+𝒁𝒏𝝐𝒏 + 𝒆𝒏, 
which shows that the modification to the first moments is 
no longer the scalar 1t, but the covariate 𝑨𝒏𝒈𝑨𝒈𝒈!𝟏𝟏𝑡, which 
can take on different values for each non genotyped animal, 
depending upon how closely it is related to the genotyped 
animals.  If the solution for t is 0, then the centering 
modification to 𝑴𝒈 will make no difference, but if 𝑡 = 𝒄′𝜶 
has a nonzero value, then the model using 𝑴𝒈  and the 
model using 𝑴𝒈

𝒄  could give very different results. Rather 

than trying to find the appropriate values to center the 
covariate matrix, we propose fitting an extra covariate as a 
fixed effect to account for the possibility that the bases of 
the genotyped and non genotyped animals are different 
(Fernando et al., 2014).  
 

Overall Conclusions 
 

Genomic prediction is an immature but rapidly 
developing technology.  In concert with developments in 
high-density marker genotyping, there have been increased 
implementation of MCMC methods as computing 
strategies, and developments in parallel computing to 
exploit multi-core processors.  Collectively, these 
developments will facilitate practical implementations of 
Bayesian prediction methods that combine all information 
from genotyped and non genotyped individuals. 
 

Literature Cited 
 

Aguilar, I., Misztal, I., Johnson, D.L. et al. (2010). J Dairy 
Sci, 93:743-752. 

Berger, P.J., Luecke, G.R., Hoekstra, J.A. (1989). J Dairy 
Sci, 72:514-522. 

Falconer, D.S., Mackay, T.F.C. (1996). Prentice-Hall. 
Fernando, R.L., Dekkers, J.C.M, Garrick, D.J.  (2014). 

Genet Sol Evol, (under review). 
Fernando, R.L., Garrick, D.J. (2013).  Berlin, Springer 

Series: Methods in molecular biology. 
Garrick, D.J., Taylor, J.F, Fernando, R.L. (2009). Genet Sel 

Evol, 41:55. 
Habier, D., Fernando, R.L., Kizilkaya, K., Garrick, D.J. 

(2011).  BMC Bioinformatics, 12:186. 
Harris, B.L., Johnson, D.L. (1998). J Dairy Sci, 81:2723-

2728. 
Henderson, C.R. (1976). Biometrics, 32:69-83. 
Henderson, C.R. (1984).  University of Guelph. 
Kizilkaya, K., Fernando, R.L., Garrick, D.J. (2010).  J Anim 

Sci, 88:544-551. 
Legarra, A., Aguilar, I., Misztal, I. (2009). J Dairy Sci, 

92:4656-4663. 
Meuwissen, T.H.E, Hayes, B.J., Goddard, M.E. (2001). 

Genetics, 157:1819-1829.  
Misztal, I., Legarra, A., Aguilar, I. (2009). J Dairy Sci, 

92:4648-4655. 
Quaas, R.L. (1976). Biometrics, 32:949-953. 
Quaas, R.L., and Pollak, E.J. (1980).  J Anim Sci, 51:1277-

1287. 
Schaeffer, L.R., Kennedy, B.W. (1986). J Dairy Sci, 

69:575-579. 
Stranden, I., Christensen, O.F. (2011). Genet Sel Evol, 

43:25. 
Stranden, I, Lidauer, M. (1999) J Dairy Sci, 82:2779-2787. 
Van Raden, P.M., Van Tassell, C.P., Wiggans, G.R. et al.  

(2009).  J Dairy Sci, 92:16-24. 
Wolc, A., Arango, J., Settar, P. et al.  (2012).  Animal 

Genetics, 43:87-96. 


