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ABSTRACT: We review the contributions of epistasis to 
the genetic variation expected in segregating populations, 
utilising models with arbitrary specified genotypic values or 
others in which there is an underlying additive scale but 
phenotype is non-linearly related to it, e.g. a multiplicative 
or threshold model.  We show that, even when there is 
substantial epistasis, rather small amounts of epistatic 
variance are likely to be generated.  With multiple loci 
contributing to the trait, the proportion of epistatic variance 
does not generally increase because all the interactions also 
contribute to main effects and hence the additive variance.  
Utilisation of even additive × additive variance with an 
appropriate relationship matrix is unlikely to be effective 
because the contributions are small and are not retained 
over generations.  Incorporation of genomic data has more 
promise if it can be focussed on tightly linked regions that 
can be transmitted across generations, but this will be 
successful only if such regions contribute substantially to 
the variance, and such evidence is lacking.  At this stage we 
think selection efforts will be, and should be, focussed on 
the additive component.  
Keywords: epistasis; additive variance; selection; 
genomics; linkage 
 

Introduction 
 

The genetic comparison of animals is based on 
their own performance and that of animals sharing genetic 
factors with them.  Their expected genetic similarity is 
deduced from pedigree information and also now directly 
using a large number of molecular genetic markers over the 
genome (genomic breeding values).  Genetic improvement 
programs in purebred populations have to date been 
concentrated on utilization of additive effects because these 
are transmissible to offspring and subsequent descendents, 
but there has been considerable recent interest in identifying 
epistatic effects among loci.  This has been stimulated by 
searches for causes of the missing heritability of 
quantitative traits from GWAS studies  (Manolio et al. 
(2009)), and by findings of substantial epistasis in analysis 
of experimental data (e.g. Bloom et al. (2013), see reviews 
by Nelson et al. (2013), Mackay (2014)) and recently in 
segregating populations (Hemani et al (2014)).  Even so, 
the proportion of the genetic variance explained by epistatic 
terms is typically small relative to the additive (Huang et al. 
(2013), Hemani et al. (2014)).  These and gene functional 
studies (see review by Phillips (2008)) have generated 
interest in including interaction effects in genome-wide 
analyses within populations, including animal breeding 
stocks.  Classical pedigree based improvement programs 
cannot fully utilize epistatic effects even if present, but new 
methodology using large scale analyses in collaborative 

data collection schemes as in human populations (e.g. 
Hemani et al. 2014) may provide some of the relevant 
information to do so .  
 

This paper is focussed on epistasis and epistatic 
variances in the animal breeding context.  In improvement 
of crossbreds there has, of course, also been interest in 
utilizing heterosis and dominance variance (within gene 
interactions), but we do not pursue this or utilization of 
epistatic dominance effects here.  We first address the 
question of how much epistatic variance is to be expected 
for quantitative traits under different models and how these 
fit expectation.  We extend previous results of Hill et al. 
(2008), in an attempt to resolve experimental findings of 
epistasis but not of much epistatic variance, in order then to 
ask ‘should we bother to pursue epistasis?’  The particular 
emphasis is on multiple loci, addressing the point that 
potential numbers of two, three, …, locus interaction terms 
rise as n2, n3, etc. for n loci, and so may dominate.  We note 
that epistasis can arise from non-linear relationships 
between an additive underlying genotype and observed 
phenotype, e.g. for a multiplicative or threshold trait.  We 
also briefly consider the impact of linkage disequilibrium, 
relevant to cis-acting epistatic effects.  We then review 
what the opportunities are for utilising epistasis with 
pedigree and genomic based methodology.  This is, at 
present, somewhat speculative. 

 
Analysis 

 
The genetic variation is assumed to be caused by n 

biallelic loci, with all in linkage equilibrium.  The allelic 
effects are assumed to be additive within loci and to 
generate only additive × additive interactions involving 2, 
3, …, n loci.  The frequency of the increasing allele Bi at 
locus i is pi.   For a pair of such loci, the genotypic values 
are 
 

b2b2         B2b2                   B2B2 
 

b1b1   0          a2               2a2 

 
B1b1  a1           a1 + a2 + [aa]12           a1 + 2a2 + 2[aa]12 
 
B1B1 2a1        2a1 + a2 + 2[aa]12        2a1 + 2a2 + 4[aa]12 
 
 
For three loci, for example, the genotypic value of B1b1 
B2B2 B3B3 is 
 

a1 + 2a2 + 2a3 + 2[aa]12 + 2[aa]13 + 4[aa]23 + 4[aaa]123.   
 

http://www.ncbi.nlm.nih.gov/pubmed?term=Nelson%20RM%5BAuthor%5D&cauthor=true&cauthor_uid=24161664


We restrict subsequent formulae to three loci for simplicity, 
but extension to more is straightforward.  The population 
mean is  
 

µ = 2p1a1 + 2p2a2+ 2p3a3 + 4p1p2[aa]12 + 4p1p3 [aa]13 + 
4p2p3[aa]23 + 8p1p2p3 [aaa]123.  

 
Average effects of gene substitution can be obtained using 
Kojima’s (1959) method. For example: 
 

α1 = ½∂µ/∂p1  
     = a1 + 2p2[aa]12 + 2p3[aa]13 + 4p2p3[aaa]123   (1) 

 
and VA = ΣiHiαi

2 where  the  heterozygosity  at locus  i  is  
Hi = 2pi (1 – pi).  Similarly, for interaction effects,  
 

[αα]12= ¼∂2µ/∂p1∂p2 =  [aa]12 + 2p3[aaa]123  
 
VAA = H1H2[αα]12 

2 + H1H3[αα]13 
2 + H2H3[αα]23 

2 
 
[ααα]123= (1/8)∂3µ/∂p1∂p2∂p3 = [aaa]123   
 
VAAA = H1H2H3[ααα]123 

2. 
The variances depend on the number of loci, allele 

frequencies, effects and interactions.  For illustration, 
expected variances are computed for two cases (Figure 1), 
one where pi = 0.5 for all loci, when heterozygosity is 
maximised, the other for a population where the allele 
frequency distribution over loci follows that expected in a 
finite population with selectively neutral mutations (U 
shape distribution, i.e. f(p) ∝1/[p(1 – p)] assuming a diploid 
population of size N = 100 (when the expected 
heterozygosity of segregating loci is E(H) ~ 0.109.  Positive 
(synergistic) and negative (antagonistic) interaction are 
considered. 
 

There are two critical points.  Firstly, all the gene 
interaction effects for any locus enter its average effects (1) 
and consequently contribute to the additive variance; those 

for epistatic effects include only interactions.  Thus for n 
loci VA comprises n × 4n – 1 terms, VAA comprises   ½n(n – 
1) × 4n – 2 terms and so on.  It is therefore not surprising 
that, with many loci, the additive variance comprises most 
of the genotypic variance.  Secondly, while VA is a function 
of heterozygosity at individual loci, those for two (three) 
locus epistatic interactions depend on products of 
heterozygosity at two (three) loci.  This further reduces 
them compared to VA, and higher order epistatic variances 
are correspondingly smaller too.  
  

The most substantial epistatic variance is likely for 
antagonistic interaction because these reduce the average 
effects and hence VA, as seen in Figure 1, but such 
cancellation of effects over multiple loci becomes less 
likely.  The impact of the heterozygosity is seen more 
strongly when the gene frequencies depart from one half as 
for the U shaped distribution. 
 

Predominance of additive variance is seen in 
Figure 1, even though the interaction effects (i.e. [aa] and 
[aaa] terms) are of similar magnitude to the gene effects a 
at individual loci.  It seems reasonable to assume that as the 
number of loci (n) influencing any trait increases, effects at 
individual loci are likely to decline roughly in proportion to 
1/√n (i.e. variance as 1/n), and  similarly two locus epistatic 
effects ∝ 1/n.  Consequently the relative contribution of the 
epistatic variance is likely to be smaller than in Figure 1.  
 

Thus we conclude that the finding of small 
amounts of epistatic variance in segregating populations, 
even with multiple epistatic loci and substantial epistasis, is 
exactly what would be expected on simple theoretical 
grounds (Mäki-Tanila and Hill, in prep.).  

 
Non-linear relationship between genotype and 

phenotype.  Epistatic variance may also arise, even with 
infinitesimal additive effects on an underlying variable, if 
there is a non-linear relationship between the underlying 
genotypic or phenotypic value (x), and observed phenotypic 

 
Table 1. Partition of genetic variance for the observed phenotypes in the multiplicative and threshold multilocus 
models when there is underlying additive genetic variation with allele frequency 0.5 (VR represents all other 
components, including dominance variance).   

 
                 Multiplicative model 
 

                  Threshold model 
 

h2 loci CVP VA/VG VAA/VG VR /VG P(x>T) VA/VG VAA/VG VR/VG 

          
0.1 5 0.3 0.996 0.004 0.00045 0.30 0.986 0.0114 0.0021 
 ∞  0.996 0.004 0.00001  0.985 0.0137 0.0010 
 5 0.5 0.990 0.009 0.00116 0.05 0.887 0.0975 0.0155 
 ∞  0.989 0.011 0.00008  0.877 0.1176 0.0048 
0.9 5 0.3 0.965 0.030 0.00451 0.30 0.749 0.0860 0.1644 
 ∞  0.962 0.037 0.00098  0.736 0.0928 0.1710 
 5 0.5 0.913 0.074 0.01381 0.05 0.317 0.3520 0.3312 
 ∞  0.903 0.091 0.00639  0.326 0.3952 0.2790 



value (y), such as with a multiplicative (cf. Dillham and 
Foulley 1998), optimum (Haldane 1954) or threshold model 
(cf. Dempster and Lerner 1950).  We consider how the 
degree of non-linearity is reflected in the partition of the 
genetic variation of the observed trait into additive and non-
additive components, assuming that the underlying genetic 
variation is additive with normally distributed 
environmental deviations.  For the multiplicative case, y = 
exp{kx} where k is a scaling factor.  For an optimal trait, 
the fitness is assumed to have quadratic or nor-optimal 
form, y = 1 – (x – xopt)2/k.  For a threshold trait the observed 
phenotype is the probability y > T, for a threshold value T.   
Variance components are obtained by differentiating the 
mean of y with respect to allele frequencies (as eq. 1). 
 

The proportion of epistatic variance increases in 
the multiplicative model as the coefficient of genotypic 
variation (CVG = √VG/µ ) becomes higher (Table 1), in the 
threshold model as the mean probability departs further 
from 0.5 (Table 1), and in the optimum model as the 
population mean becomes closer to the optimum.  In each 
case this is when the relation between the underlying 
genotype and observed phenotypes is most highly non-
linear.  Most of the epistatic variance is contributed by VAA, 
as higher derivatives are smaller for such non-linear 
continuous functions.  Only for the threshold model and 
with very extreme probabilities does VAAA contribute much.  
More epistatic variance results with higher heritability 
values (h2) on the underlying scale, when the environmental 
variance does not dilute the non-linear relationship.  
Although the underlying variable is additive, dominance 
variance and interactions are also produced, but these are 
small unless only a few loci of large effect contribute to the 
genetic variance in x.  
 

As the number of loci becomes large, the additive 
variance on the observed scale can be deduced from the 
covariance between observed phenotype and underlying 
genotype.  For example, in the multiplicative model 
cov(x,exp{kx}) = µh2Vx, where h2 and Vx are on the 
underlying scale,   
 

 
VA/VG = ln(1 + CVG

2)/CVG
2   

 
on the observed scale (Cockerham, 1959).  Hence it can be 
shown that  
 

VA/VG = h2ln(1+ CVP
2)/[(CVP

2 + 1)h2 – 1]  
 
on the observed scale.  For the threshold and optimum 
models the additive variance is obtained by differentiation, 
showing analogy between Robertson’s method (in 
Dempster & Lerner (1949)) and Kojima’s (1959).  In 
practical animal breeding, the models can be linearised by 
log-transformation in the multiplicative model, using 
different kinds of liability model for threshold traits and 
concentrating on linear local change in the quadratic curve 
of the optimum model.  
 

Figure 1. Partition of genetic variance in the multilocus 
model with positive ([aa] = [aaa] = a) and negative ([aa] 
= [aaa] = a) two and three locus interaction (VA grey, 
VAA red, VAAA dark red) for allele frequency 0.5 and for 
U shaped allele frequency distribution. 
 
 

         

 
 



Influence of linkage disequilibrium among very 
tightly linked loci.  In the presence of linkage 
disequilibrium (LD), effects at different loci are not 
orthogonal so it is not possible to partition variation 
between contributions of individual loci, except arbitrarily, 
e.g. fitting locus A and then B after A.  Hence we consider 
contributions from pairs of linked loci simultaneously, and 
just estimable quantities such as the genotypic variance and 
the covariances of close relatives.  More general results 
were given by Gallais (1974). 
 

We consider contributions from pairs of loci with 
the same model of genotypic values, with only additive and 
additive × additive effects.  The LD coefficient is D and 
haplotype frequencies are, for example, freq(B1B2) = p1p2 + 
D.  There is random mating, with Hardy-Weinberg applying 
to genotype frequencies in terms of haplotype frequencies.  
To simplify formulae yet exemplify the main points, we 
assume linkage is sufficiently tight that there is negligible 
recombination over a single generation, i.e. only non-
recombinant gametes are produced.  This is justified 
because substantial LD between loci can have arisen in 
finite populations, even with some selection, only if linkage 
is very tight (order 1/N) or selection very strong.  As we 
consider only first generation relatives, i.e. sibs and 
offspring, we are ignoring only one generation’s 
recombination.  
 

        The overall mean is  
 

µ = 2p1a1 + 2p2a2 + (4p1p2 + 2D)[aa]12.  
 
After some messy algebra, the genotypic variance can be 
shown to be 
 

VG = 2p1(1 – p1)a1
2 + 2p2(1 – p2)a2

2 + 4Da1a2 + 4{2p1(1 
– p1)p2 + D}a1[aa]12 + 4{2p1p2(1 – p2) + D}a2[aa]12 + 
{4p1p2(1 + p1 + p2 – 3p1p2 ) + 2D(1 + 2p1 + 2p2 – 
4p1p2)} [aa]12

 2                                                
 
Note that, in the absence of epistasis, i.e. [aa]12 = 

0, VA = VG and  the variance comprises contributions due to 
variances at individual loci and the term 4Da1a2 from the 
covariances between loci.  As it occurs in subsequent 
formulae, let  
 

E = {p1(1 – p1)p2(1 – p2 ) + D2}[aa]12 2  
    = p1(1 – p1)p2(1 – p2)(1 + r2)[aa]12 2,  

 
where r is the correlation of gene frequencies. 
 

The covariance of parent and offspring (covOP) in 
the absence of recombination, such that individuals transmit 
their constituent haplotypes entire, is equal to twice the 
half-sib covariance.  These turn out to be  
 

covOP = 2covHS = ½VG – E.   
 
In the presence of epistasis this does not accord with 
familiar expressions, covOP = ½VA + ¼VAA and covHS = ¼VA 

+ (1/16)VAA, but these apply with free recombination when 
alleles at different loci transmit independently. With 
negligible recombination, the covariance of full sibs comes 
from 50% sharing one haplotype in common, contributing 
covHS, and 25% sharing both, contributing ¼VG. Hence 
 

covFS = ¼VG + covHS = ½VG – ½E.  
 
Hence the covariance of full sibs within half sibs is ¼VG 
and the sire × dam interaction in a diallel analysis is  
 

VS×D = covFS – 2covHS = ½E.  
 
These results apply, of course, for any arbitrary pair of loci 
under the same assumptions.  
 

The proportion of the variation contributed by the 
utilizable (‘additive’) components, e.g. covOP, is large, 
compared to e.g. VS×D which involves only the epistatic 
term E.  This is because E is a function of products of 
heterozygosity (potentially doubled if r2

 = 1), in contrast to 
the ‘additive’ components which are functions of 
heterozygosities or third order terms in gene frequency.  We 
see therefore that the component of epistatic variance that 
influences the different types of covariance is a small 
proportion of VG.  Enumerated examples, not shown, 
support this conclusion. 
 

Possibilities for utilizing epistasis 
 

Ideally we should give answers to questions such 
as: what kind of gains are there from including epistatic 
deviations among selection criteria; can the epistatic 
variance be utilized using classical selection using 
phenotypic and pedigree information; and what potential is 
there by also incorporating genomic information? 
 

Covariances among relatives and selection.  
Formulae for contributions of epistatic variance to 
covariances among relatives date back to Fisher (1918) and 
to the work of Cockerham (1954), Kempthorne (1954) and 
subsequently Bulmer (1980).  Even though amounts of 
epistatic variance are small, we should understand how it 
might be utilized in breeding programs.   
 

The covariance among relatives due to interactions 
involving additive effects from unlinked loci is given by 
powers of the relationship, as noted above, e.g. 
 

 covFS = covOP  = ½VA + ¼VAA + (1/8)VAAA + …,  
 
and therefore the epistatic terms contribute proportionately 
much less to covariances among more distant relatives,  e.g. 
for grandoffspring and grandparent  
 

covGOGP = ¼VA + (1/16)VAA + (1/32)VAAA+ …  
 
Thus the regression of offspring on parental mean 
phenotype equals (VA + ½VAA + …)/VP and that on 
grandparental mean phenotype is (VA + ¼VAA + …)/VP.  



Half the gain from VAA obtained in the progeny is lost in the 
grandprogeny, so gains from epistasis are not cumulative, 
(Griffing (1960); Bulmer (1980); Crow (2008)). 
  

Genetic evaluations should contain all possible 
factors affecting the variation.  When relevant factors are 
omitted, the accuracy is reduced, e.g. in breeding value 
estimation the neglect of non-additive effects would result 
in losses dependent on their variance.  Existence of epistatic 
variance also causes a bias in estimates of the additive 
variance from close relatives.  Non-additive effects have 
been largely ignored because of the highly involved 
machinery and extra computing time required for their 
estimation.  The practical problem is to have sufficient data 
to distinguish between different models and obtain adequate 
estimates of effects.  We should also note that the breeding 
values and epistatic effects are to a large extent confounded, 
e.g. the elements of the relationship matrix for A×A terms 
are squares of those of the additive relationship matrix.  The 
theory shows that even ubiquitous gene interactions in a 
multi-locus quantitative genetic system is expected to 
produce only small amounts of epistatic variance within 
populations in addition to the additive variance.  Even with 
very large data sets, estimates of the contributions of 
epistasis in outbred populations have (so far) been in 
accordance with these expectations.   

 
Epistatic contributions to covariances among 

relatives are influenced by linkage (Cockerham 1956; 
Lynch and Walsh 1998) and, importantly, selected 
haplotypes are retained across generations.  For a pair of 
loci with recombination fraction c, the expression for 
regression on parental mean now becomes (VA + (1 – 
c)VAA)/VP  and that on grandparental mean phenotype is (VA 
+ (1 – c)2VAA)/VP.  Coefficients of VAAA depend on retention 
of the corresponding full three locus haplotype.  Similarly 
covariances among sibs are different functions of c and so 
are not simple multiples of those between generations. 
 

Across the genome as a whole, the mean 
recombination fraction is very close to one-half because 
most pairs of loci lie on different chromosomes or far apart 
on the same chromosome.  Therefore putting selection 
effort on utilizing epistasis would seem to be wasted unless 
linkage can be employed.  Also, in view of the limited 
amount of epistatic variance, it is most likely to be useable 
if concentrated among linked sites on which selection can 
be focused.  This implies that conventional selection based 
on overall pedigree is unlikely to be effective in utilizing 
epistasis, as many, dating back to Lush, have appreciated. 
In any case, weighting on average effects in pedigree or 
genomic analyses automatically also puts weight onto 
epistatic sites.  Does incorporation of genomic information 
change this picture?  
 

Genomic tools.  There are very few cases where a 
single gene explains a substantial fraction of the variation in 
a metric or disease trait.  It is even less likely that pairs or 
trios of loci with a major contribution will be found.  In 
genome-wide analyses, the number of effects to be 

estimated is the square of that for individual loci, so with 
many thousands of markers very stringent test criteria have 
to be used and therefore the power is very low.  It has 
become obvious that GWAS cannot harvest all the existing 
genetic variation, in particular that due to rare alleles is 
often undetected.  Such problems are greater in considering 
interaction effects, where estimation also depends on LD of 
two pairs of markers and trait genes; and interaction effects 
are likely to be of smaller order than main effects with 
multiple loci.  Hence detection of many epistatic effects in 
livestock populations is unlikely, although with sufficient 
resources not perhaps impossible. 
 

Machine learning methods rather than linear 
models have been suggested as a way to fit single locus and 
epistatic components of any order (Gianola and de los 
Campos (2008), Long et al. (2008)) for example in 
prediction of survival of progeny of individual sires.  Whilst 
such a method can identify the best animals to breed 
offspring, it does not identify those likely to have the best 
grandoffspring and beyond because it does not reflect the 
Mendelian transition process whereby genotypes are re-
assorted each generation and only the additive components 
persist.  
 

We consider different scenarios, informed by 
GWAS analysis in the population.  If a GWAS analysis, for 
example,  reveals no substantial specific pair-wise 
interactions, even though there is evidence of substantial 
epistatic variance from pedigree studies, it seems unlikely 
to be worthwhile to try to utilize it rather than focusing on 
additive effects at individual loci, whether utilizing 
pedigree or genomic relationship information.  It could be 
done using a two site genomic relationship matrix, basically 
a square of elements at individual sites, but this seems 
unlikely to add much to the relationship matrix per se but 
add greatly to computation. 

A second scenario is where a GWAS or similar 
analysis reveals substantial interactions among two or more 
sites for traits of interest, but these sites are essentially 
unlinked (say c > 0.4), i.e. trans effects.  In principle, 
markers around both sites (and sets of sites) could be fitted 
in addition to the overall genomic relationship matrix or 
Bayesian scenario fitted using individual gene effects.  The 
benefits from doing so might be small, as recombination 
would imply that only one quarter of the favored haplotypes 
are retained and devoting selection to them rather than to 
additive effects throughout the genome would surely not be 
justified. 
 

The third and more interesting scenario is where a 
GWAS or similar analysis reveals regions of large effect on 
the trait and where fitting individual SNPs within regions 
identifies cis epistatic effects, also of course implying that 
LD between the trait loci is not complete.  It would then be 
feasible to fit the markers in the region jointly, perhaps 
adding it into the Bayesian weighting of individual sites. 
Details and practicalities have yet to be explored.  The 
critical point is that such epistatic haplotypes would be 
transmitted and the use of the genomic data enables 
selection among them.  For example, it might be useful in 

http://www.ncbi.nlm.nih.gov/pubmed?term=de%20los%20Campos%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19123970
http://www.ncbi.nlm.nih.gov/pubmed?term=de%20los%20Campos%20G%5BAuthor%5D&cauthor=true&cauthor_uid=19123970


selection to eliminate an undesirable allele pair, for 
example causing disease or infertility.  Thus we see a 
narrow window of opportunity, but suspect it is only such. 
 

The selection on linked interacting major genes is 
worth pursuing although compromises in the overall 
efficiency of selection follow.  As with marker-assisted 
selection with major genes, care should be attached to the 
use of promising marker pairs in selection as relying on 
false positives would impair the accuracy of selection 
compared to the case of not using them.  
 

Conclusions 
 

In conclusion, epistatic variance is expected to be 
small on theoretical grounds and recent observations 
support this. It is also hard to exploit beyond small and 
temporary gains in selection response and can generally be 
ignored in breeding programs within populations.  Genomic 
predictions with large marker panels are also likely to gain 
very little by including interaction effects in the analyses.  
More research is needed about the obviously rare cases of 
major genes with substantial interaction and how the 
variation of such tightly linked genes could be harnessed. 
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