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Opportunities for improvement of phenotypic variability: influence of direct vs epistatic effects
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ABSTRACT Genetic regulation of phenotypic variability
has recently become a hot topic in quantitative genetics.
Empirical evidence has shown that individual loci control-
ling phenotypic variability or “vQTL” can be mapped in
population-based studies, and also that there are polygenic
effects on the variability. In the breeding context, scientists
have been investigating whether it is possible to select for
phenotypic variability or uniformity, in order to better con-
trol the production quality. However, since apparent vQTL
effects can be caused by various types of interactions, such
as epistasis which influence the genetic variance, possibil-
ity of selection for phenotypic variability may not be guar-
anteed. Here, based on epistatic models, we theoretically
analyze and discuss the selection for phenotypic variability.
Our results indicate that such selection would be effective in
changing the phenotypic variance via interaction effects only
for a few special situations.
Keywords: variation in phenotypic variability, one vs many
loci, epistasis

Introduction

Recent evidence indicates that the uniformity or variability,
rather than the magnitude, of complex traits is also under ge-
netic control. Evidence comes both at the multi-locus level
(e.g. Hill et al., 2010; Mackay et al., 2005) and can even be
mapped to the individual locus level (e.g. Geiler-Samerotte
et al., 2013; Jimenez-Gomez et al., 2011; Shen et al., 2012;
Wolc et al., 2012; Yang et al., 2012). Such individual loci
have been named “vQTL” (Rönnegård et al., 2010a). vQTL
can arise not just from the effects of individual loci on con-
trolling variation of the phenotype directly through their in-
fluence on environmental variance, but also from epistasis
on mean phenotype, as variability among genotypic values
at one locus depends on the allele at the other. In human
genetics, for example, genome-wide association analysis of
variability-controlling sites is a powerful way to detect gene-
gene and gene-environment interactions because fitting vari-
ance differences at one site may give much higher power
than fitting interaction effects at two or more (e.g. Paré et al.,
2010; Struchalin et al., 2010). It is therefore potentially very
useful in re-construction of interaction pathways for pre-
diction purposes for both disease and other complex traits.
Genome-wide data also indicate that there is a substantial
amount of inherited variation in such variance-controlling
loci (Shen et al., 2012). Hence, new directions should be de-
veloped for selection using such knowledge, incorporating
genomic data, and can be important in better understanding
and partitioning the variation in quantitative traits.

The idea or concept of variance heterogeneity, that genes
and genotypes may influence the variability as well as the
mean of complex traits, is of long standing, but only rela-
tively recently has evidence become available, e.g. (Hill et
al., 2010) and subsequent to that review, at the level of indi-
vidual loci. In agriculture, genes regulating robustness could
be of benefit in producing more uniform products, saving in
post-processing costs, and/or animals less sensitive to man-
agement or environment. There are a limited number of lab-
oratory experiments in which selection to change phenotypic
variance has been undertaken, with some success (see the re-
view by Geiler-Samerotte et al., 2013). Breeding projects,
such as RobustMilk (http://www.robustmilk.eu), have been
initiated to test the effectiveness of selection for phenotypic
uniformity.

As the cause of apparent vQTL could be epistasis, how-
ever, it is important to know whether selection is changing
effects on phenotypic variance exhibited at individual loci or
genetic variance due to epistasis among loci. Since selec-
tion for phenotypic variability or uniformity is based on a
polygenic scenario rather than individual loci, the feasibil-
ity of such selection is unclear (e.g. counterexamples in Hill
et al., 2010, with rather low estimated heritability of genet-
ically regulated variance heterogeneity). In this paper, we
investigate models of epistatic interaction, and then discuss
how these influence the possibility of successful selection for
phenotypic variability. We first consider pairs of interacting
loci, and then generalize to more. There are assumed to be
no direct effects on the phenotypic variability (i.e. variance
of phenotype given genotype), but potential differences in
genetic variance at individual or multiple sites as a conse-
quence of epistasis.

Theoretical Analysis & Results

Epistasis between two loci and its effect on variance het-
erogeneity Consider a two-locus model with additive ef-
fect at each locus and additive x additive interaction in an
outbred population of a diploid organism, assuming Hardy-
Weinberg equilibrium (HWE) at all loci and no linkage dis-
equilibrium between them,

y = µ +g1β1 +g2β2 +g1g2β12 + e

where the individual phenotypic value y is determined by an
intercept µ , genotypes at loci 1 and 2 (g1 and g2, coded as
the number of copies of the major allele) with their main ef-
fects β1 and β2, their interaction (epistatic) effect β12 and
a residual e ∼ N(0,σ2). Given the minor allele frequency
(MAF) q at locus 2, we have g2 ∼ B(2,q), E[g2] = 2q and
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V (g2) = 2q(1− q). In order to evaluate the phenotypic
variability (variance heterogeneity) across locus 1 genotypes
caused by its interaction with locus 2, we have

V (y|g1 = 0) = V (E[y|g1 = 0,g2])+E[V (y|g1 = 0,g2)]

= V (µ +g2β2)+E[σ2]

= 2β
2
2 q(1−q)+σ

2

Similarly,

V (y|g1 = 1) = 2(β2 +β12)
2q(1−q)+σ

2

V (y|g1 = 2) = 2(β2 +2β12)
2q(1−q)+σ

2

Combining terms,

V (y|g1) = 2q(1−q)(β2 +β12g1)
2 +σ

2 (1)

Clearly, V (y|g1) is a constant if and only if β12 = 0, which
implies that, if there is such an epistatic effect, there will be
phenotypic variance heterogeneity regulated by locus 1.

Polygenic epistasis with one apparent vQTL as “con-
troller” Let us extend the model to a polygenic scenario
where locus 1 (vQTL) influences the action of multiple (k)
loci and so has epistatic effects with each, and k is large
enough to approximate statistical asymptotic properties.

y = µ +g1β1 +
k+1

∑
j=2

(g jβ j +g1g jβ1 j)+ e

Similarly, g j ∼ B(2,q j) ,where q j is the MAF at locus j.
E[g j] = 2q j and V (g j) = 2q j(1−q j) (2 6 j 6 k+1). Hence,
extending eq.(1)

V (y|g1) = 2
k+1

∑
j=2

q j(1−q j)(β j +g1β1 j)
2 +σ

2

Similarly, V (y|g1) depends on g1 if there is at least one j for
which β1 j 6= 0, which means that if there are epistatic effects
between locus 1 and multiple loci interacting with locus 1,
the phenotypic variance will depend on the genotype of locus
1. If for all j, β jβ1 j > 0, i.e. the epistatic effect (if non-zero)
and the main effect of the corresponding QTL have the same
direction, then

V (y|g1 = 2)>V (y|g1 = 1)>V (y|g1 = 0)

and the variance difference will be largest, otherwise the
phenotypic variance does not necessarily vary across lo-
cus 1 genotypes. Nevertheless, assuming for example k is
large and for each j, β j ∼ N(0,σ2

J ), β1 j ∼ N(0,σ2
1J), and

Cov(β j,β1 j) = 0, the phenotypic variance given the geno-
type of locus 1 is approximately

Eβ j ,β1 j [V (y|g1)] = 2
k+1

∑
j=2

q j(1−q j)E[(β j +g1β1 j)
2]+σ

2

= 2(σ2
J +g2

1σ
2
1J)

k+1

∑
j=2

q j(1−q j)+σ
2

and therefore we could still expect V (y|g1 = 2) > V (y|g1 =
1)>V (y|g1 = 0) in practice where the effects are polygenic.

Polygenic epistasis with multiple apparent vQTL If we
further extend the model to

y = µ +
m

∑
i=1

g1iβ1i +
m

∑
i=1

k+1

∑
j=2

(g jβ j +g1ig jβ1i j)+ e

with m vQTL, rather than only locus 1, interacting with the
other k loci, then

V (y|g1i) = 2
m

∑
i=1

k+1

∑
j=2

q j(1−q j)(β j +g1iβ1i j)
2 +σ

2

where V (y|g1i) does not depend only on the genotypes of a
single locus. There are in total 2m vQTL haplotypes, and the
phenotypic variance for each particular haplotype approxi-
mates

Eβ [V (y|g11,g12, · · · ,g1m)]

= Eβ

[
2

m

∑
i=1

k+1

∑
j=2

q j(1−q j)(β j +g1iβ1i j)
2 +σ

2

]

= 2
m

∑
i=1

(σ2
J +g2

1iσ
2
1iJ)

k+1

∑
j=2

q j(1−q j)+σ
2

given that for each j, β j ∼ N(0,σ2
J ) and β1i j ∼ N(0,σ2

1iJ),
where β j and β1i j are independent, and β stands for the set
of {β j,β1i j}. Although obviously, Eβ [V (y|g11 6= 0,g12 6=
0, · · · ,g1m 6= 0)]>Eβ [V (y|g11 = g12 = · · ·= g1m = 0)], these
two extreme haplotypes are likely to be rare or absent in a
real population, as are many other haplotypes if m is large.
Furthermore, if g1i ∼ B(2, f1i), for each individual that has
randomly sampled genotypes for the m vQTL, the variance
quantity above is approximately

Eg1i [Eβ [V (y|g11,g12, · · · ,g1m)]]

= 2
m

∑
i=1

(σ2
J +E[g2

1i]σ
2
1iJ)

k+1

∑
j=2

q j(1−q j)+σ
2

= 2
m

∑
i=1

(σ2
J +2q1i(1−q1i)σ

2
1iJ)

k+1

∑
j=2

q j(1−q j)+σ
2

Thus, for such a polygenic scenario, because each locus is
involved with interactions among very many loci and signs
of these are likely to vary, any genetically regulated variance
heterogeneity among individuals is likely to be small and un-
detectable. Indeed, this variance will merely comprise part
of the epistatic variance, if indeed that could be estimated.
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Simulation Based on the Arabidopsis thaliana genome
data (250K SNP array) of 100 randomly selected lines from
the RegMap population (Hancock et al., 2011), we simulated
phenotypes from polygenic epistatic models and estimated
the heritability of the residual variance. The phenotype was
simulated as

y = µ +gadd +gepi + e

where gadd ∼ N(0,Gσ2
add), gepi ∼ N(0,G ◦ Gσ2

epi), e ∼
N(0,Iσ2), and ◦ represents the Hadamard (element-wise)
product between matrices. G is the genomic kinship ma-
trix constructed using all the available SNPs and weighted
by the allele frequencies. In the simulation, σ2

add , σ2
epi and

σ2 were set to 1. Using the hglm package (Rönnegård et al.,
2010b), a linear mixed model including the additive genetic
effects

y = µ +gadd + e

was fitted, and the estimated deviances (squared residuals)
were d̂. A second linear mixed model

d̂ = ν +gvar + e∗

where ν is an intercept, gvar ∼ N(0,Gσ2
var) and e∗ ∼

N(0,Iσ∗2), was fitted to estimate the heritability of the resid-
ual variance (variance heterogeneity), defined as

h2
var =

σ̂2
var

σ̂2
var + σ̂∗2

Such a simulation procedure was repeated 30 times. The
mean heritability for the variance was 0.0044 with standard
error 0.0031 and P = 0.17 from a student t-test against 0.
This agreed with our theoretical analysis that such epistatic
effects could not explain variation in phenotypic variability,
and that selection for variance heterogeneity caused by poly-
genic epistasis is unlikely to be effective, even though a large
number of interacting “vQTL” do exist.

Conclusion

Assuming underlying epistatic models, we showed that se-
lection for phenotypic variability or uniformity may be suc-
cessful only when a small number of vQTL are involved.
Polygenic scenarios likely even out the genetic regulation of
phenotypic variability due to polygenic epistasis. There is no
similar constraint on the potential effectiveness on selection
to utilize individual or multi-locus differences in the environ-
mental and thus phenotypic variance due to loci which affect
the variance directly. Such selection can act both at the in-
dividual or multi-locus level just as selection on trait mean
(Hill et al., 2004; Mulder et al., 2007). Our results motivate
future discoveries of the genetic basis in populations with
relatively high heritability of residual variance (e.g. Rön-
negård et al., 2013), and potentially also explain why such
selection may not succeed in practice.
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