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ABSTRACT: Genomic information can enhance breeding 
programs by increasing the accuracy of estimated breeding 
values. In a multi-trait setting, genomic information also 
provides opportunities to remove limitations of traditional 
breeding programs with regard to genetic improvement of 
‘hard to measure’ traits, in particular if they have 
unfavorable genetic correlations with ‘easy to measure’ 
traits. The objectives of this paper are to describe and 
discuss the impact of availability of genomic information 
on breeding goals and phenotyping programs for multi-trait 
improvement of selection programs towards an overall 
economic objective. 
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Introduction 
 

The standard strategy for development of multi-
trait selection criteria, as initially proposed by Hazel (1943) 
includes four steps: 1) Define the overall objective (e.g. 
profit per animal); 2) Develop a linear breeding goal 
(aggregate genotype, H) as a function of genetic traits that 
contribute to the overall objective; 3) Derive the economic 
value (v) for each trait in H, defined as the change in the 
overall objective per unit of change in the trait, keeping all 
other traits in H constant; 4) Derive a linear index (I) of 
information sources that maximizes the accuracy of the 
index with H. Selection index theory (Hazel, 1943) can be 
used to derive the optimal index in step 4) and to predict 
responses to multi-trait selection in the overall objective 
and in component traits. The latter is important to evaluate 
and compare alternate multi-trait selection criteria or 
breeding programs, as well as the value and impact of 
different sources of information on responses to selection. 
Results demonstrate how achieving improvement in the 
overall objective not only depends on genetic and economic 
parameters but also on what information (phenotypes, 
genomic data) is available, which is a crucial component of 
the design of breeding programs. 

 
In principle, availability of genomic information 

does not affect the development of the first three steps 
above, although it could affect the sensitivity of step 4) to 
errors in economic values, which affects the importance of 
getting accurate results in step 3). Genomic predictions 
constitute additional sources of information that can enter 
the selection index and contribute to achieving multi-trait 
response toward the overall objective. Of particular interest 
in this regard is the extent to which genomic information 
can overcome the problems associated with multi-trait 
improvement for traits that are unfavorably correlated, i.e. 
for which the sign of the genetic correlation is opposite to 
the sign of the product of their economic values. The main 
objective of this paper is to discuss strategies to overcome 

these limitations, with emphasis on specific phenotype 
recording programs under genomic selection. 

 
To set the stage, we will start with a brief 

description of the development of multi-trait selection 
criteria based on multi-trait estimated breeding values 
(EBV) and prediction of associated responses to selection 
and demonstrate how responses to selection depend on the 
variance-covariance matrix of the EBV. The latter matrix 
forms the connection between phenotype recording and 
multi-trait genetic improvement and drives the impact of 
targeted recording of phenotypes on multi-trait genetic 
improvement, both with and without genomic selection.  

 
Multi-trait Selection Criteria 

 
Consider the following aggregate genotype:  

H = v1g1 + v2g2 … vngn = v’g [1] 
where gi and vi are the additive genetic value and economic 
value of trait i, and the following multi-trait selection index: 

I = b1x1 + b2x2 … bmxm   = bx’x [2] 
where xj is the jth source of information (an individual 
phenotypic record or the average of records) on the 
individual and/or its relatives on a trait in H or on a trait 
that is correlated to one or more traits in H. Following 
Hazel (1943), selection index weights that maximize the 
accuracy of I as a predictor of H can be derived as: 

bx = Px
-1Gxv   [3] 

where Px=var(x) is the mxm variance-covariance matrix of 
information sources in I and Gx=cov(x,g) is the mxn matrix 
with covariances between information sources in I and 
genetic traits in H. Also, define C=var(g) as the nxn matrix 
of genetic variances and covariances between traits in H. 

The accuracy of any linear index I defined in [2] 
(including the optimal index) can be derived as the 
correlation between H and I as: 

  rHI    = σHI/(σIσH) = bx'Gxv/(σIσH) [4] 
        with σHI  = cov(H,I)   = bx'Gxv  [5] 

σ
2
I  = var(I)  = bx'Pxbx [6] 

σ
2
H  = var(H)  = v'Cv  [7] 

The vector of genetic superiorities of selected 
individuals for each of the traits in H, i.e. response to 
selection, per standard deviation of selection on the index 
(selection intensity = 1) is derived by regressing of I on g:  

Sg = ]S,,[S
n1 gg …  = bx’Gx/σI [8] 

Genetic superiority for the breeding goal is the sum of 
responses in traits, weighted by their economic values:  

SH = Sgv   [9] 
Note that equations [4] through [9] hold not only for the 
optimal weights derived using b=P-1Gv, but for any 
arbitrary vector of index weights.  

 



In modern breeding programs, information on 
traits is summarized in the form of EBV ( ĝi ) that are 
derived based on single or multi-trait BLUP genetic 
evaluation methods, using recorded phenotypes on all 
individuals in the population. In the genomics era, EBV 
also include genomic information, derived by blending 
direct genomic breeding values (DGVs) with standard 
BLUP EBV (Van Raden et al. 2009), or by joint analysis of 
phenotypes on genotyped or non-genotyped individuals, as 
in single-step BLUP (Misztal et al. 2009). The multi-trait 
selection criterion is then formulated as:  

I = b1 ĝ1  + b2 ĝ2  +… + bm ĝm = bEBV’ ĝ  [10] 
 
When the EBV are derived using multi-trait BLUP 

and traits in H and I are the same, then, using properties of 
multi-trait BLUP EBV,  

PEBV = GEBV = var( ĝ )   [11] 
which is the variance-covariance matrix of EBV, and 
optimal index weights are equal to the economic values 
(Schneeberger et al. 1992): 

bEBV = PEBV
-1GEBVv = v   [12] 

 
Thus, in this case, optimal index weights are 

independent of genetic parameters and the accuracy of the 
individual EBV because that information is already 
captured in the EBV. However, accuracy of the index and 
responses to selection do depend on the accuracy of the 
EBV because they are a direct function of the variance-
covariance matrix of EBV, i.e. 
 rHI    = σHI/(σIσH) = bEBV’GEBVv/(σIσH) [13] 
and Sg  = bEBV’GEBV/σI    [14] 
with  σ

2
I  = bEBV’GEBV bEBV   [15] 

and PEBV = GEBV = bmtPxbmt    [16] 
with bmt = Px

-1Gx     [17] 
 
When traits in H and I are not the same, economic 

values on traits in H can be reparameterized to economic 
values on traits in I by the vector of genetic regressions of 
traits in I on traits in H (Schneeberger et al. 1992):   

vI = bgHgI
' v   with   bgHgI

' =CI
-1CIH   [18] 

where IC  is the genetic variance/covariance matrix among 
the traits in I and CIH  is the genetic covariance matrix 
between traits in I and traits in H. Accuracy of the index 
and responses in traits in I are derived following equations 
[13] and [14] but using the standard deviation of the full H. 
Responses for traits in H can be predicted by multiplying 
responses in traits in I obtained by the genetic regressions:  

SgH
 = bgHgI

' bEBV’GEBV /σI   [19] 
When EBV are single-trait, weights in bmt from equation 
[17] must be replaced by single-trait index weights (bst), 
derived using trait-specific records for each trait EBV. 

 
As demonstrated by equations [14] and [9], trait 

responses to selection on an index of multi-trait EBV are a 
direct function of the variance-covariance matrix of EBV 
(PEBV =GEBV), which quantifies the variance-covariance 

structure of the assumed multi-variate Normal distribution 
of EBV. Diagonal elements of GEBV are equal to the square 
of accuracy of trait EBV and genetic variance, while off-
diagonals depend on the information available and can 
result in correlations equal to 1 in extreme cases (i.e. when 
no trait-specific data is available for a trait). With full 
accuracy of EBV, GEBV=C, the genetic variance-covariance 
matrix among traits. Figure 2 illustrates for a two-trait 
example for cases that will be discussed later, how adding 
information on traits affects both the magnitude and 
direction of responses in individual traits and thereby 
responses in the breeding goal, by expanding and tilting the 
ellipse of possible responses to selection. The response 
ellipse (Moav and Hill, 1966) provides all possible 
combinations of response in the two traits that can be 
achieved across the full range of relative economic values 
for the two traits, based on equation [14], given the 
assumed multi-normal distribution of trait EBV, as 
quantified by matrix GEBV.  
 

Incorporating Genomic Information in Multi-trait 
Selection Criteria 

 
Methods to incorporate marker or genomic 

information into single and multi-trait selection criteria 
using selection index theory were described by Lande and 
Thompson (1980) for marker information and by Dekkers 
(2007) for genomic prediction information. Briefly, genetic 
evaluations based on marker genotypes (Direct Genomic 
Values, DGV) can be included in selection index equations 
as separate information sources for the genetic traits in I or 
H, or by defining each DGV as a new correlated trait with 
heritability equal to 1, genetic variance equal to the 
variance of DGV = 22

gDGVr σ , where DGVr is the accuracy 

of the DGV, and a genetic correlation with the 
corresponding phenotype-based trait equal to DGVr  
(Dekkers, 2007). If genomic information is used to obtain 
DGV with BLUP properties, which is the aim of genomic 
prediction, then variances and covariances involving the 
DGV are derived using properties of BLUP EBV and 
accuracies of the DGV. Assuming environmental 
covariances are zero, covariances of the DGV of individual 
i on trait k with a phenotype information source in I or with 
the genetic value of relative j on trait l are equal to	   aij

rgkl rDGVik
2 σ gk

σ gl , where aij is the pedigree relationship 

between individuals i and j and rgkl is the genetic correlation 
between traits k and l. Derivation of covariances with other 
sources of information requires the approximation that 
phenotypes used for training are on different individuals 
than phenotypes that contribute to pedigree-based EBV. 
This may often not be the case and could lead to 
overestimation of the benefit of adding genomic 
information. 

Accuracy of genomic EBV depends on the size of 
the training population, heritability of the phenotypes used 
for training, historical effective population size, and 
relationships of individuals in training and selection 



candidates, and can be derived empirically or analytically 
(e.g., Goddard et al. 2011). 
 
Impact of Genomics on Formulation of Breeding Goals 

 
Formulation of breeding objectives and breeding 

goals should be driven by the economics of the production 
system or market that is the target of genetic improvement 
and by the genetic traits that drive differences in the overall 
breeding objective (e.g. profit per animal) in that production 
system or market. Thus, formulation of breeding objectives 
and breeding goals is in principle independent of the design 
of the breeding program or of information collected to 
effect genetic improvement, including genomic 
information. However, availability of genomic information 
can affect the impact that uncertainty about estimates of 
parameters that contribute to development of breeding goals 
has on responses to selection, in particular uncertainty of 
economic values. 

 
Methods for derivation of economic values were 

summarized by Knap (2014). Most theory and methods for 
derivation of economic values was developed prior to the 
1990’s. Since that time, development of breeding goals and 
estimation of economic values has received limited 
attention in the literature. There may be several reasons for 
this, including: i) adequate methods for estimation of 
economic values are available; ii) several studies have 
shown that response in the overall breeding objective is 
rather robust to inaccuracies in estimates of economic 
values (VandePitte and Hazel, 1970; Smith, 1983); iii) with 
the increasing prevalence of corporate breeding programs, 
development of breeding objectives has moved outside the 
public domain; iv) increasing competition among breeding 
programs has increased emphasis on market position and 
marketability when making multi-trait selection decisions. 

 
Robustness of responses to multi-trait selection to 

uncertainty about economic values is driven by non-zero 
genetic and phenotypic correlations between traits and 
limited accuracy of EBV of some traits, which results in 
response in those traits to primarily result from correlated 
responses in the more accurately evaluated correlated traits, 
regardless of their economic value. However, genomics 
allows more accurate EBV to be obtained for in principle 
all traits. To investigate the impact of this on robustness of 
responses to uncertainty in economic values, figure 1 shows 
the response in H with two traits with true economic values 
equal to 1 but when a wrong economic value is used for one 
of the traits, resulting in a suboptimal index and suboptimal 
responses to selection. Comparing responses in H resulting 
from the suboptimal to the optimal index shows that lost 
response from using improper estimates of economic values 
generally is larger when accuracies of EBV are increased 
by genomic selection. Thus, the importance of deriving 
proper economic values and weights for multi-trait 
selection criteria is more important in the era of genomics 
than it may have been previously. Similar arguments apply 
when evaluating the impact of modified index weights or 
desired gains indexes to address market considerations (e.g. 
Dekkers and Gibson, 1998) on responses to selection. In 

addition, decisions on investment into genomics require 
correct estimates of the economic impact of genetic 
improvement. 
 
Impact of Genomics on Phenotype Recording Programs 
 

Phenotype recording is a crucial component of 
animal breeding programs. As demonstrated earlier 
(equation [14]), for multi-trait selection on EBV, the 
magnitude and direction of response to selection in 
breeding goal traits is proportional to the variance 
covariance matrix of EBV, GEBV, which depends on the 
information that is used to estimate EBV and, therefore, on 
the sources of information that are available. Although the 
use of molecular information in theory reduces the 
importance of phenotypic records, the large training data 
that are required for accurate genomic prediction (Goddard 
et al. 2011) and the need for retraining (Wolc et al. 2011) 
requires continuous emphasis on phenotype recording 
programs. However, the design of phenotype recording 
programs may require substantial change with the advent of 
genomic selection. For example, König and Swalve (2009) 
showed that specialized test herds for potential bull dams in 
dairy cattle lose their benefits with genomic selection and 
suggested that these facilities or investments are better used 
to collect data that contribute to development of genomic 
predictions. Genomic selection also allows phenotype 
recording investments to be made in specific traits to 
overcome limitations of traditional programs. 

 
With traditional phenotype-based selection, the 

accuracy of EBV at the time of selection is determined by 
genetic parameters and the number or records available on 
the individual and its close relatives on traits that are 
included in the multi-trait index. Design of traditional 
breeding programs, therefore, includes decisions on family 
structure and about which traits to record on which 
individuals and when within that family structure. For a 
given population capacity, family structure is primarily 
driven by the number of sires and dams used for breeding, 
which also determines selection intensities and rates of 
inbreeding. Trait characteristics also impose limitations on 
which traits records can be recorded on the individual 
and/or it’s close relatives, at what age of selection 
candidates those records are available, and whether the 
traits can be recorded on animals within the nucleus 
breeding population. Categories of traits that do not meet 
these criteria, which we will refer to as hard to measure 
(htm) traits, in contrast to easy to measure (etm) traits, 
include sex-limited traits, traits that require animals to be 
sacrificed (e.g. meat quality traits), traits that are not 
available at a young age, traits that are expensive or 
difficult to measure, traits that require keeping animals in 
non-nucleus environments (e.g. disease traits), and traits 
measured on crossbred animals. Improving accuracy of 
EBV for htm traits requires records to be collected on sibs 
or progeny. These limitations reduce the accuracy of EBV 
that can be obtained on htm traits or increases generation 
intervals and/or increases rates of inbreeding because of 
extensive use of family information. This limits 
opportunities to select for htm traits and limits genetic 



improvement in the breeding goal, even if the htm traits 
have high economic importance. For htm traits that have 
unfavorable genetic correlations with etm traits that 
typically have higher accuracy of EBV, response to 
selection can even be unfavorable, despite their economic 
importance. Many traits related to disease resistance and 
robustness fall in this category (Rauw et al. 1998). 

 
Gibson (1989) recognized the impact that the 

design of breeding programs can have on the direction of 
selection trait responses for a given breeding goal, which he 
termed ‘artificial evolution’. He proposed investigating the 
impact of alternative designs on the ratio of response 
between traits i and j: Rij = Si/Sj, with Si predicted as in 
equation [8] and showed how alternative designs and 
economic weights could change this ratio of trait responses. 

 
To overcome the limitations of traditional breeding 

programs for genetic improvement of htm traits, several 
strategies have been developed and proposed, including sib- 
or progeny-testing and combined pure-bred and cross-bred 
breeding programs that utilize data collected in the field 
(Wei and van der Werf, 1994). These, however, require 
substantial investments, have complicated logistics, for 
example by requiring pedigree to be tracked in order for 
phenotype records to be linked back to the selection 
candidates, and can lead to increased rates of inbreeding.  

 
Genomic prediction reduces the importance of 

having records on selection candidates themselves and/or 
their close relatives, although it is well known that accuracy 
of genomic EBV is higher for selection candidates that have 
close relatives in the training data (Habier et al. 2007). One 
of the features of genomic prediction is that it capitalizes on 
the contributions that distant relatives can make to the EBV 
of selection candidates, through their genomic relationships 
across the genome and/or at specific regions of the genome, 
depending on the method used for genomic prediction. This 
removes many of the restrictions on accuracy of EBV for 
htm traits and also increases the value of each individual 
phenotypic record because the information from each 
record is leveraged across a larger number of individuals, 
both in the current generation and in future generations.  

 
Genomic selection also allows for greater 

flexibility in investments in phenotyping, for example for 
investments to be directed at specific htm traits. Although 
in principle, all traits can benefit from genomic prediction, 
optimization of data collection designs may include 
prioritization of which traits should be emphasized in the 
creation of a training data set. While the aim of building 
training data should be to collect as many traits as possible 
on the individuals that are genotyped, some traits (e.g. 
disease challenge traits) may require specialized facilities 
that may prevent recording these animals for other traits. 

 
As an example of determining priorities for trait 

recording, table 1 demonstrates that in a multi-trait 
selection setting, as expected, availability of a genomic 
prediction of a given accuracy (0.75 in the example) for a 
trait that has low accuracy in the traditional program leads 

to a greater relative improvement in the breeding goal than 
availability of a genomic prediction for the trait that has 
higher accuracy under traditional selection. However, this 
difference is greater, in relative terms, when the two traits 
have an unfavorable genetic relationship. The table also 
shows that the low accuracy trait requires a lower accuracy 
of the genomic EBV to obtain the same improvement in 
response in the breeding goal than the high accuracy trait, 
especially if the traits have an antagonistic relationship.  
 

Figure 2 shows the response ellipses for the 
scenarios with positive and negative correlations for the 
scenario of table 2. The shape of the response ellipses is 
driven by the variance-covariance structure among the 
EBV, i.e. matrix GEBV, which depends on the underlying 
genetic parameters and the information that is available on 
each trait. Optimal directions of selection are driven by the 
shape of the response ellipse within the space of the overall 
objective, H, which is visualized by the iso-profit contours. 
The optimal direction of selection is the point on the ellipse 
that reaches the highest iso-profit contour. Results clearly 
show the impact of both the underlying genetic parameters 
(favorable versus unfavorable trait correlations relative to 
trait economic values) and the information that is available 
on each trait on optimal responses in H and individual 
traits. When the trait correlation is unfavorable, 
improvement in the trait with low accuracy (trait 2) is 
problematic, and even in the wrong direction. Increasing the 
accuracy for trait 2 expands the response ellipse in the 
dimension of variation for trait 2 and allows greater 
improvements to be made in trait 2 and, therefore, in H. 
Thus, prioritization of trait recording to maximize response 
in the breeding goal is driven by the economic parameters 
and how changes in accuracy of EBV for individual traits 
modify the variance-covariance structure of EBV towards 
the underlying genetic constraints, i.e. variance-covariance 
matrix C.  

 
Following the artificial evolution concept of 

Gibson (1989), Amer (2012) investigated the impact of 
implementing genomic selection on the ratio of response in 
robustness versus production: RRob,Prod = SRob/SProd. Using 
dairy cattle as an example, results showed that, depending 
on the genetic parameters, large training data sets and 
priority on recording robustness phenotypes would be 
needed for genomic selection to result in an increase in 
RRob,Prod compared to progeny testing; for small training 
data sets, and assuming even less training data is available 
for robustness than production, genomic selection resulted 
in a reduction of RRob,Prod, i.e. reducing the relative response 
for robustness. 

 
As an example of the development of specialized 

data sets for genetic improvement, Banks et al. (2006) 
described the development of a specialized information 
nucleus for the collection of records on htm traits in sheep. 
Van der Werf et al. (2010) described criteria and algorithms 
for the choice of sires whose progeny should be included in 
an information nucleus for the purpose of maximizing 
information for estimation of quantitative genetic 
parameters for new traits, conduct whole-genome 



association studies, and enhance estimation of breeding 
values of selection candidates by phenotype-based or 
genomic prediction. Criteria included i) trait diversity, 
aiming for high diversity of EBV among contributing sires 
across the multi-trait space of EBV expressed in economic 
units, ii) orthogonality, which aims to orthogonalize genetic 
and phenotypic differences among contributing sires by 
increasing diversity (based on pedigree-relationships) 
among individuals with similar multi-trait EBV, and iii) 
genetic diversity, by minimizing relationships among 
contributing sires. If sires have genomic data, van der Werf 
et al. (2010) suggested use of haplotype diversity across the 
genome as an additional criterion for choice of contributing 
sires. Massault et al. (2013) described an algorithm to 
optimize the choice of individuals to phenotype within a 
pedigree to maximize accuracy of EBV of selection 
candidates. Similar criteria could also be used to identify 
individuals that should be genotyped and phenotyped for 
the purpose of building multi-trait training data sets for 
genomic prediction. When the focus is on choice of 
individuals for genotyping based on existing information, 
the accuracy of EBV should also be included in order to 
maximize available information on genotyped individuals. 
Implications for long-term rates of inbreeding should also 
be considered, since individuals with accurate EBV are 
more likely to be selected. Optimal allocation of resources 
also depends on the cost of phenotyping versus genotyping. 
To maximize use of data collected in the information 
nucleus, van Grevenhof et al. (2012) showed that 
individuals in the nucleus rather than their parents should 
be genotyped. Investments in genotyping should also be 
compared to the alternative of directing these investments 
to additional phenotyping in a traditional program (e.g. 
Tribout et al. 2012). 

 
Conclusions 

 
Availability of genomic information does not 

affect the development of breeding goals and economic 
values but can affect the sensitivity of the outcome of 
breeding programs to errors in economic values or the use 
of suboptimal economic values. In a multi-trait setting, the 
magnitude and direction of responses to selection on EBV 
is driven by, besides selection intensities, the variance-
covariance structure of EBV among selection candidates, 
which depends on the information available to derive EBV, 
along with underlying genetic parameters. Selection index 
theory provides convenient methodology to explore the 
limitations of breeding programs and the impact of 
availability of additional phenotypic or genomic 
information on individual traits. Availability of genomic 
information impacts the outcome of multi-trait breeding 
programs in terms of the magnitude and direction of 
responses in individual traits and in the overall objective by 
changing the variance-covariance structure of EBV among 
selection candidates. Genomic information provides 
opportunities to prioritize phenotype recording to overcome 
limitations of traditional phenotype-based programs for 
multi-trait genetic improvement. Additional research is 
needed on strategies and tactical approaches to optimize 

genotyping and phenotyping to maximize the benefit of 
genomic information in multi-trait breeding programs.  

 
Figure 1: Lost response from uncertainty about 
economic values with traditional (TS) and genomic (GS) 
selection, depending on the genetic correlation between 
traits (rg=rp). True economic values = 1 for both traits. 
Accuracy of EBV equal to 0.64 and 0.43 for traits 1 and 
2 under TS and equal to 0.9 for both traits under GS. 
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Table 1: Optimal responses to selection for two traits 
with equal economic values and genetic standard 
deviations (=1), genetic and phenotypic correlations 
equal to +0.5, 0, or -0.5, and EBV based on own 
phenotype (h2 = 0.3 and 0.05 for traits 1 and 2) or 
genomics (GS) with accuracy 0.75 for both traits. 
 

Availability 
and accuracy 

of GEBV 

rg 
= 
rp 

Responses 
to 

selection 

% in-
crea-
se in 

H trait 1 trait 2 trait 1 trait 2 H 
- - 0.5 0.564 0.261 0.826  

0.75 -  0.742 0.374 1.116 35.1 
- 0.75  0.579 0.705 1.284 55.4 

0.75 0.75  0.690 0.683 1.372 66.1 
- 0.601  0.563 0.552 1.115 35.1 
- - 0 0.507 0.085 0.592  

0.75 -  0.712 0.064 0.777 31.3 
- 0.75  0.322 0.61 0.932 57.4 

0.75 0.75  0.522 0.537 1.059 78.9 
 0.551  0.386 0.392 0.778 31.3 
- - -0.5 0.513 -0.12 0.397  

0.75 -  0.681 -0.23 0.451 13.6 
- 0.75  0.148 0.428 0.577 45.3 

0.75 0.75  0.345 0.331 0.676 70.3 
- 0.431  0.384 0.067 0.451 13.6 

 

1 Accuracy of genomic EBV for trait 2 to achieve the same 
improvement in response as having a genomic EBV for 
trait 1 with accuracy 0.75. 

 

Figure 2: Response ellipses and optimal directions of 
response (arrows) for index selection for two traits with 
equal economic values and genetic standard deviations 
(=1), genetic and phenotypic correlations equal to +0.5 
(top graph) or -0.5 (bottom graph) and EBV based on 
own phenotype (h2 = 0.3 and 0.05 for traits 1 and 2) or 
genomics (GS) with accuracy 0.75 for both traits. Black 
ellipse = selection on true breeding values; blue = 
selection on EBV based on own phenotype; purple = 
+GS for trait 1 only; green = +GS for trait 2 only; 
orange = +GS for both traits. Broken lines are iso-profit 
contours, specifying combinations of responses that 
result in equal response in the breeding goal. Optimal 
response is achieved at the tangent between the response 
ellipse and iso-profit contours. 
 

 

 


