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ABSTRACT: Rainbow trout breeding scheme was simu-
lated to estimate how within-family pre-selection of finger-
lings and information on culled fish affect genetic evalua-
tion of grow-out weight traits in two environments. Fish for 
different datasets were randomly sampled (R) or pre-
selected and information on culled fish were either individ-
ually measured (S+IND), replicated with their family-
specific averages (S+AVER), or missing (S-MIS). Variance 
estimates in R and S+IND did not diverge from simulated 
values, whereas S+AVER decreased residual variances. 
Accuracies of EBVs were equally high for R, S+IND and 
S+AVER. For S-MIS, convergence problems occurred, 
variance components were distorted, and EBV accuracies 
were low. Selection bias was consistently expressed by 
overestimated genetic and common environment variances, 
and underestimated residual variances. Data adjustment by 
S+AVER is concluded to sufficiently control for selection 
bias in genetic evaluation of growth, but for estimation of 
variances R or S+IND are preferable. 
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Introduction 
 

Some genetic improvement programs for fish ap-
ply a two-stage selection scheme. In this scheme phenotyp-
ic pre-selection is first practiced within families based on 
body size of juvenile fish (usually at id-tagging). At the 
second stage, brood fish candidates are evaluated and se-
lected for mating based on their estimated breeding values 
(EBVs) for economically important traits, such as harvest 
body weight. Pre-selection improves genetic response in the 
breeding objective, i.e., in traits correlated with the pre-
selected trait (Martinez et al. (2006); Sae-Lim et al. (2013)). 
Other benefits of pre-selection are fixed animal numbers 
among families, and reduced number of individuals reared 
up to harvest or reproduction, which lower management 
costs of the program (Mueller (1984)).  

 
Large family sizes and considerable variation of 

growth in most cultivated fishes enable high selection in-
tensities to be used within families. However, intense pre-
selection may cause a bias in the estimates of (co)variance 
components and EBVs, unless information on the culled 
animals is included in genetic analyses (Henderson (1975); 
Meyer and Thompson (1984)). The impact of selection bias 
on genetic parameter estimates can be usually taken into 
account by using a multivariate animal model with the pre-
selected trait(s) included (Henderson (1975); Meyer and 

Thompson (1984); Pollak et al. (1984); Outweltjes et al. 
(1988)). However, the assumptions of this statistical tech-
nique are no longer fulfilled when records of the non-
selected i.e. culled animals are missing. Because selection 
bias may hinder the achievement of intended genetic pro-
gress, appropriate means to adjust for pre-selected data are 
needed. 

 
In this study, a stochastic simulation was used to 

investigate how within-family pre-selection based on fin-
gerling weight and different precision of information of 
culled fish affect variance parameters and accuracy of ge-
netic evaluation in different grow-out body weight traits. 
The specific interest was to compare how the effect of pre-
selection on genetic parameter estimates can be accounted 
for when the observations of fingerling weight for culled 
fish are either 1) individually measured, 2) replicated as 
their family-specific averages, or 3) are missing. The design 
of the simulation was adopted from a Finnish breeding 
program for rainbow trout, Oncorhynchus mykiss (Kause et 
al. (2005); Janhunen et al. (2013)). 

 
Materials and methods 

 
Simulation of data. Half-sib data with 150 full-sib 

families were generated in a stochastic simulation for a 
breeding population of rainbow trout using a split-family 
design. The base population comprised 75 dams and 75 
sires, which were assumed to be unrelated and non-inbred 
and had neither pedigree information nor own phenotypic 
records. Each parent was mated twice using a partial facto-
rial design. The initial full-sib family size was 100. 

 
Simulated traits were fingerling body weight at id-

tagging, at six months of age (BW1), and harvest weight at 
the freshwater nucleus (BW2) and sea test station (BW2sea) 
at two years of age. Each trait had a phenotypic mean of 0 
and they followed a multivariate normal distribution, in 
which phenotypic variance was partitioned into three 
(co)variance components. The simulated genetic, common 
environment and residual (co)variances were derived from 
the Finnish breeding population of rainbow trout (Janhunen 
et al. (2013)). BW1 had a genetic and common environment 
correlation of 0.46 and 0.37 with BW2 and 0.39 and 0.43 
with BW2sea, respectively. The corresponding phenotypic 
correlations were 0.42 and 0.32. Residual covariance be-
tween BW2 and BW2sea was set to zero. 

 



For offspring generation, phenotypic records for 
each body weight trait were simulated as the sum of an 
individual’s true breeding value (TBV), an early environ-
ment effect common to full-sibs (i.e., fish are reared in 
separate family tanks before tagging), and a residual effect. 
TBVs were simulated as the average of parents’ TBVs plus 
a Mendelian sampling term. 

 
Data treatments. Four differently treated data 

(i.e., different pre-selection strategies) were generated from 
the full simulated data. In random sampling (R), individuals 
were tagged randomly without selection. Other three data 
treatments represented within-family threshold selection 
(S), in which the phenotypic value of BW1 was used as a 
criterion for pre-selection. That is, only the biggest fish 
from each family were selected. In each data treatment, the 
proportion of selected individuals per family was 40% (i = 
0.97), which was divided so that the 25 biggest fish were 
retained as brood fish candidates in the freshwater nucleus 
(n = 3,750 fish in total) and 15 fish were chosen to the sea 
test station (n = 2,250 in total). 

 
The pre-selected individuals had their original 

simulated BW1 and either BW2 or BW2sea records, depend-
ing on the rearing environment. In selected data scenarios, 
the BW1 records of culled fish were either 1) measured 
individually (S+IND), 2) were replicated as the family-
specific averages of the culled fish (S+AVER), or 3) were 
missing (S-MIS). 

 
Analysis. The estimation of variance components 

and EBVs for BW1, BW2 and BW2sea was performed using 
a multitrait animal model. For each trait, the model was: yij 
= µ + Animi + Fullsibj + eij, where yij denotes an observa-
tion of an individual i, µ is the fixed overall mean of a trait, 
Animi is the random genetic effect of an individual i (i = 1–
n of fish), Fullsibj is the random common environment 
effect of full-sibs modeled without pedigree information (j 
= 1 to 150 family tanks), and eij is the random residual 
effect.  

 
Variance components were analyzed using DMU 

6.0 software (Madsen and Jensen (2008)), and the EBVs 
were estimated using MiX99 software package (©Biomet-
rical Genetics, MTT Agrifood Research Finland, 
www.mtt.fi/BGE/Software). The effect of different data 
treatments on the accuracy of EBVs was evaluated using 
Pearson’s product-moment correlations between EBVs and 
TBVs. The correlations were calculated only for the brood 
fish candidates in the freshwater nucleus. 

 
Each data treatment was simulated 500 times, but 

the variance component estimates and EBVs were averaged 
only over the replicates that achieved convergence in the 
estimation of (co)variance components. The parameter 
estimates obtained from the alternative data treatments were 
compared with the simulated parameter values. 

 
Results and Discussion 

 
Adjustment of pre-selected data by average BW1 

values of culled fish (S+AVER) could, on average, restore 
the phenotypic mean in BW1 to zero (consistent with 
S+IND and R) (Table 1). Instead, the results for the selected 
data with missing observations (S-MIS) differed from the 
other data treatments. The number of converged iterations 
was clearly the lowest in S-MIS (43% of replicates con-
verged). These estimation problems were presumably due 
to difficulties to disentangle genetic and common environ-
ment effects from each other in data with reduced infor-
mation content. S-MIS also produced substantially higher 
BW1 means than other data treatments, because no records 
were available for the small culled individuals. 

 
Table 1. Number of replicated simulations at conver-
gence and average phenotypic means1 (± SD) for tagging 
weight (BW1) and two harvest weight (BW2 and 
BW2sea) when alternative data treatments were applied. 
Data 
treat-
ment2 

N of repl. BW1 BW2 BW2sea 

R 462   0.0 (1.0)   63 (13) -75 (12) 
S+IND 466   0.0 (0.9) 133 (13)   35 (12) 
S+AVER 447   0.0 (0.9) 132 (13)   35 (12) 
S-MIS 213 12.3 (0.9) 129 (13)   30 (11) 
1 Mean (±SD) was calculated across replicates. 

2Random sampling (R) and threshold selection within families 
(S); BW1 records for culled fish are individually measured (+IND), aug-
mented as replicated mean of the culled fish in a family (+AVER), or are 
missing (-MIS) 

 
 
There was no observable bias in the average vari-

ance parameters of any body weight trait when R or S+IND 
data treatment was used (Table 2). Instead, S+AVER sub-
stantially decreased residual variances from their simulated 
values, particularly for BW1 and BW2. However, only the 
h2 estimate of BW1 showed a notable deviance from the 
simulated parameter value (+7 percentage points). Similarly 
to convergence success, within-family pre-selection seri-
ously distorted the estimates of variances in all traits when 
S-MIS was used (Table 2). For each trait, a considerable 
reduction was found in residual (and total) variance, where-
as concomitant increases occurred in genetic and, in partic-
ular, common environment variance. Genetic and common 
environment variances were upward biased because within-
family selection with no records for the culled individuals 
makes full sibs phenotypically more similar. Because the 
residual variance of BW1 dropped almost to zero in S-MIS, 
h2 and c2 values became strongly overestimated (+17 and 
+33 pp, respectively). S-MIS also elevated the h2 estimate 
of BW2 from its simulated value (+9 pp). 

 



For each body weight trait, the correlations be-
tween TBVs and EBVs were equally high for R, S+IND 
and S+AVER, and the lowest correlations were found in S-
MIS (Table 3). The equivalent accuracies in the first three 
alternatives correspond with the fairly unchanged estimates 
of genetic variance, and thus suggest the consistency of 
brood fish candidates selected as parents. 

 
Table 3. Mean Pearson’s correlation coefficients1 be-
tween true and estimated breeding values for body 
weight traits2 when alternative data treatments2 were 
applied. 

Data 
treatment 

BW1 BW2 BW2sea 

R 0.58 0.66 0.59 
S+IND 0.56  0.66 0.59 
S+AVER 0.56 0.66 0.59 
S-MIS 0.41 0.58 0.54 

1Calculated across replicates; see N in Table 1. 
2For traits and data treatments, see Table 1. 

 
 
In this study, BW1 was only moderately correlated 

with both harvest weights, which presumably promoted 
S+AVER to reduce selection bias in each trait. The higher 
the correlations between BW1 and the harvest traits, the 
higher the selection bias would be. Further, large family 
sizes of fish combined with moderate (not too strong) selec-
tion intensity within families contribute to the benefit of 
S+AVER, because the actual means and distributions of the 
selected trait (here BW1) can then be predicted with a fair 
degree of precision. In agreement with the present results, 
however, data augmentation with average records for culled 
animals was shown to improve the accuracy of genetic 

evaluation also in pigs which only have a few offspring per 
family (Appel et al. (1998)). 

 
Conclusion 

 
The missing data due to within-family pre-

selection not only causes difficulties in the estimation pro-
cess of (co)variance components but also decreases the 
accuracy of genetic parameters. The biased estimates may 
lead to incorrect ranking of breeding candidates and thus 
reduce genetic progress in growth. The replacement of the 
missing observations with the average of the culled fish in 
their family was found to be an applicable alternative for 
the individual measurements of the culled fish. Although 
data adjustment by replicated averages of culled fish pro-
duced somewhat biased variance estimates, the selection 
bias in genetic evaluation of growth (on-growing weight 
traits) could be largely accounted for. This method is suita-
ble for large-scale fish breeding programs where within-
family selection is performed but practical limits may often 
prevent individual measurements from all of thousands of 
culled fish. However, in experimental studies where precise 
estimates of variance parameters are needed, either random 
samples from families or individual measurements from all 
culled fish are preferable. 
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