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ABSTRACT: Genetic parameters for ultrasound carcass 
and growth traits were estimated by factor analyses used as 
a special case of structural equation models in a Bayesian 
framework. Data were analyzed using the standard multi-
trait mixed models with sire model (Model 1; SMTMs). 
The factor analyses (FA) were done by four alternative FA 
models. The results indicate that FA models could estimate 
breeding values of the bulls practically equal relative to the 
SMTMs. The FA models may reduce the ranking model 
and give a parsimonious estimation of genetic covariance 
matrices. Although the FA models may reduce covariance 
matrices ranks and give a parsimonious estimation of 
dispersion parameters, these models have to be tested in 
order to implement the benefits, as an alternative of 
SMTMs. 
Keywords: animal breeding; carcass; genetic parameters; 
structural equation models; ultrasound 
 

INTRODUCTION 
The continuous increasing of records and traits in 

genetic evaluation schemes for beef cattle generally involve 
multi-trait mixed models analyses, which requires genetic 
links among these traits. It leads to statistical and 
computational difficulties in estimating the genetic 
(co)variance matrix needed to have accurate breeding 
values. Structural equation models (SEM, e.g., Wright 
1921) are multivariate models adapted to obtain more 
parsimonious quantitative genetic mixed-effects models 
(Gianola and Sorensen (2004)). SEM can be understood 
like a term that does not denote a particular statistical 
technique, but a number of techniques and procedures used 
together aiming to model some covariance structure. 

In animal breeding, specifically in this paper, SEM 
was used to model the estimated genetic and residual 
(co)variance matrix. These models can be viewed as an 
extension of the standard multi-trait mixed models (SMTM, 
e.g., Henderson and Quaas (1976)) that are capable of 
expressing functional networks among traits. Gianola and 
Sorensen (2004) discussed the use of recursive and 
simultaneous equation models (special case of SEM) acting 
on phenotypes. Alternatively, the Factor Analysis (FA) may 
be used as another special case of SEM to represent the 
genetic covariance matrix (Jӧreskog (1970)). FA can be 
used to model genetic effects in the context of a 
multivariate linear mixed model for reducing the dimension 
of the estimated genetic (co)variance matrix, obtaining a 
more parsimonious model without reducing dimension of 
the original records (e.g., de los Campos and Gianola 
(2007)).  

The objective of this study was to consider FA (a 
special case of SEM) acting on genetic and residual effects 
separately to estimate genetic and residual (co)variance 
parameters modeling traits and estimating genetic 
parameters in genetic improvement of Brazilian Nelore beef 
cattle.  

 
MATERIALS AND METHODS 

Data. Data of 2,700 animals were provided by the 
Nelore Breeding Program - Nelore Brazil (PMGRN) and 
collected from 2002 to 2004 on ten farms located in six 
Brazilian states. Animals were born from 2000 to 2002. The 
following real-time ultrasound carcass measures were 
collected: longissimus muscle area (LMA) and backfat 
thickness (BF), both obtained from a cross-sectional image 
on the longissimus dorsi muscle, measured between the 
12th and 13th ribs; and rump fat thickness (RF), measured 
at the intersection between the gluteus medium and biceps 
femoris muscles located between the hooks and pin bones. 
Backfat thickness was evaluated at the 3/4 position from the 
chine bone end of the longissimus muscle, using the cross-
sectional ribeye image. Other traits recorded included: body 
weight (BW), hip height (HH), both measured at the date of 
ultrasound scanning, and 450-days of age standardized 
scrotal circumference (SC). With the exception of SC, traits 
were measured in animals ranging from 480 to 629 days of 
age. A description of traits in Brazilian Nelore cattle are 
presented in Table 1. 

Factor analysis. A vector of random variables 
(ui), in a standard FA model, can be described as a linear 
combination of fewer unobservable random variables called 
common factors (fi) with the unobservable incidence matrix 
(Λ) of factor loadings plus a vector of trait-specific factors 
(δi) peculiar to each i. In compact notation, ui = Ʌfi + δi 
(Equation 1). Thus, to work with the entire data these 
equation can be written as, u = (In⨂Λ) f + δ (Equation 2), 
where u = (u’1, ... , u’n), f = (f’1, ... , f’n), and δ = (δ’1, ... , 
δ’n). This gives covariance matrix of u under the FA model 
like, 𝐶𝑜𝑣(𝐮𝑖) = 𝚺𝑢 = 𝚲𝚲′ + 𝚿 , with 𝚿  = Diag {  𝚿𝑖 } = 
diagonal matrix of specific variances. The marginal 

distribution of ui is, ]',[~ ΨΛΛ0u +N
iid

i . 
Consider now a SMTM for p traits measured on 

each of n subjects, the equation for the entire data set is, 
εZuXβy ++=  (Equation 3), where y = (y’1, ... , y’n)’, X 

= (X’1, ... , X’n)’, Z = Diag {Zi}, u = (u’1, ... , u’n)’, and ε = 
(ε’1, ... , ε’n)’. A standard probability assumption in 
quantitative genetics or the joint distribution of random 



effects is ( ) [ ] [ ]00 GA0, uRI0, εuε, ⊗⊗= NNp , where 

0R  and 0G  are within-subject and within-sire residual and 
additive (co)variance matrices, respectively, A is the 
relationship matrix and ⨂ is the direct product operator.  

To implement the FA as a special case of SEM to 
model the genetic and the residual (co)variance matrix, it 
was assumed that equation 2 holds the vector of random 
additive genetic effects (u) in equation 3, likewise for the 
vector of random residual effects (ε)  so that,

( )[ ] ( )[ ] ,εεεε δf ΛIZδf ΛIZXβy +⊗++⊗+=  where Λ, X and 
Z are as before, β is a systematic effect and f and δ are 
interpreted as vectors of common and specific additive 
genetic effects, respectively, similarly for the random 
residual effects (ε). Combining the assumptions of the FA 
model described above with those of SMTM leads to the 
random effects joint distribution of, 
( ) [ ] [ ]Ψ)ΛΛ(A,  )ΨΛΛ(I,  '' +⊗+⊗= 0u0εuε, NNp εεεε

, 
where εΛΛ   and  

are the matrix of additive genetic and 
residual factor loads, respectively, εΨ  Ψ and are the diagonal 
matrix of specific additive genetic and residual variances, 
respectively. 

 Statistical analyses. Data were analyzed using a 
SMTM sire model (Model 1: SMTMs). Systematic effects 
included: contemporary groups (defined as animals of the 
same sex, except for SC, born in the same herd, year and 
season, and reared within the same management group), age 
of animal at scanning (linear effect, except for SC), and age 
of dam (linear and quadratic effects for BF, RF, HH, and 
BW). 

The FA were done in Model 2 (FA2F, with two 
factors for the matrix of additive genetic and residual 
loading factors) and in Model 3 (FA3F, with three factors 
for the matrix of additive genetic and residual loading 
factors). Based on the results of these Models 2 and 3 more 
models were generated (Models 4 and 5). Model 4 (FA2G) 
had two factors only for the matrix of additive genetic 
loading factors and in the residual matrix it was considered 
as in SMTMs. The Model 5 (FA2R) had two factors only 
for the matrix of residual loading factors, and the additive 
genetic matrix was considered as in SMTMs. 

All models were implemented in a Bayesian 
framework. Inferences were based on 160,000 samples 

from the posterior distribution obtained after discarding 
40,000 samples as burn in, and thinned every 10th iteration. 
Convergence was checked by inspection of trace plots of 
dispersion parameters. After estimating all the genetic 
parameters the Spearman and Pearson correlation was 
calculated between the sire breeding values for all traits to 
compare all these models.  

 
RESULTS AND DISCUSSION 

Factor analysis. The estimated parameters to 
compare different Bayesian models are shown in Table 2. 
The Deviance Information Criterion (DIC, Spiegelhalter et 
al. (2002)) favored SMTMs and FA2G over the other three 
models. In the same sense, the posterior mean of the log-
likelihood (Mean(L)) fitted considerably better the data 
from these both models (SMTMs and FA2G) than FA2R, 
FA2F and FA3F. Indicating that FA2G might be an 
alternative to the SMTMs in genetic evaluation schemes for 
beef cattle involving multi-trait estimates. 

As expected, the estimated numbers of effective 
parameters (pD, Spiegelhalter et al. (2002)) was higher in 
FA3F. However, the FA2G had fewer effective numbers of 
parameters (Table 2), indicating a more parsimonious 
model than the other. The number of parameters (p) of Σu, 
in the FA are, p = q + mq - m(m-1)/2 parameters, where q × 
m are the size of Λ matrix of factor loads. FA3F has 21 p in 
each matrix (additive genetic and residual), while FA2F has 
17 p in each matrix (additive genetic and residual). In 
SMTMs, the p of 0G are, p = q(q+1)/2 parameters, where q 
× q is the size of 0G matrix and in SMTMs has 21 p in each 
matrix (additive genetic and residual). Depending on the 
data set, i.e. the number of records and number of traits the 
FA models may be used as special case of SEM to reduce 
covariance matrices rank in the model and give a 
parsimonious estimation of genetic parameters compared to 
SMTM. In this paper FA3F had poorer fit to the data 
compared to the other models; however, FA2G was 
effective compared to SMTMs. Generally, when more 
factors are included in the model, it might better explain the 
relationships between traits; however, when it has a smaller 
number of traits, fewer factors can be precisely estimated. 
Because we have only six traits and the number of records 
of SC used is limited (1,340), this may, partially, explain 
the worst DIC, pD and Mean(L) of FA3F. 

Table 2. Estimated parameters to compare different 
Bayesian models. 
Models†  
Parameters§  

SMTMs  FA2F FA3F FA2G FA2R 

DIC 37,874.7 38,036.8 38,918.0 37,898.3 38,043.4 

pD  456.4 455.2 566.0 431.2  499.7 

Mean(L) -18,709.2 -18,790.7 -19,176.0 -18,733.5 -18,771.8 
†SMTMs=Standard multi-trait mixed models with sire model; 
FA2F=Model with two factors for the matrix of additive genetic and 
residual loading factors; FA3F=Model with with three factors for the 
matrix of additive genetic and residual loading factors; FA2G=Model with 
two factors only for the matrix of additive genetic loading factors and in 
the residual matrix it was considered as in SMTMs; FA2R=Model with 
two factors only for the matrix of residual loading factors, and the additive 
genetic matrix was considered as in SMTMs; 
§ DIC=Deviance Information Criterion; pD= The estimated numbers of 
effective parameters; Mean(L)= The posterior mean of the log-likelihood;  
 

Table 1. Descriptive statistics of ultrasound carcass and 
growth traits in Nelore cattle.  

Traits§ No. of 
records 

Mean ± SD¥ No. 
of 

sires 

No. of 
dams 

No. 
CG£ 

LMA, cm2 2,770 48.05 ± 8.36 231 2,552 243 
BF, mm  2,577 1.87 ± 1.07 226 2,397 253 
RF, mm  2,566 2.95 ± 1.94 226 2,384 252 
SC, mm 1,340 245.87 ± 

30.22 
106 1,009 88 

HH, cm  2,349 136.06 ± 5.04 226 2,308 250 
BW, kg  2,942 339.69 ± 

65.98 
236 2,683 302 

§ LMA = longissimus muscle area; BF = backfat thickness; RF = rump fat 
thickness; SC = standardized scrotal circumferences at 450 days of age; 
BW and HH = weight and hip height obtained at the time of scanning, 
respectively. 
¥ SD = standard deviation. 
£ No.CG = number of contemporary groups. 
 



As discussed by Smith et al. (2001) and 
Kirkpatrick and Meyer (2004) the FA model usually 
reduces the rank of covariance matrices, but the Ψ matrix 
has to be close to zero, when specific effects are assumed 
absent. This provides a mixed model formulation with less 
than full rank covariance matrices.  

Genetic Parameters. In Tables 3 and 4 are shown 
estimates of heritabilities (diagonal), genetic (above 
diagonal) and residual correlations (below diagonal), 
obtained from the FA2G and the SMTMs, respectively. The 
heritabilities and genetic breeding values estimated with 
FA2F, FA3F, FA2G and FA2R (not shown) were similar to 
those reported in Table 3. The exceptions are most 
heritabilities estimated by SMTMs (Table 4), which yield 
slightly larger estimates (except for SC), but with the same 
pattern and within one standard deviation of those obtained 
by FA models. The Spearman and Pearson correlation of 
the breeding values of all traits and all models ranged 
between 0.94 and 1.00 showing that to select based on these 
breeding values, any of those FA models would be a good 
strategy to estimate such parameters.  

As expected, the residual correlations between the 
traits in Model 4 (FA2G; Table 3) were practically equal as 
the SMTMs (Table 4). Nevertheless, most of the genetic 
correlations between the traits in Model 4 (FA2G; Table 3) 
were somewhat lower compared with the SMTMs (Table 
4). On the other hand, these genetic correlations obtained 
by Model 4 (FA2G; Table 3) have the same pattern 
compared with the SMTMs (Table 4) but with a lower 
magnitude. Only when genetic correlations were of lower 
magnitude the FA models could estimate the corresponding 
covariance reasonably well, suggesting that FA models 
would not be a good alternative to estimate high 
correlations as discussed by Kirkpatrick and Meyer (2004). 

 

CONCLUSION 
Results suggest that factor analyses used as a 

special case of structural equation models could estimate 
breeding values of the bulls practically equal to standard 
multi-trait mixed models using sire model. These models 
have to be tested in order to implement the benefits, as an 
alternative to standard multi-trait mixed models using sire 
model. Depending on the data set, namely the number of 
records and traits, the factor analyses can reduce covariance 
matrices ranks and give a parsimonious estimation of 
genetic dispersion parameters compared to standard multi-
trait mixed models, especially if the covariances between 
the traits are low. 
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Table 3. Estimates of heritability (diagonal), genetic (above 
diagonal) and residual (below diagonal) correlations, with 
standard deviation obtained from the factor analysis (Model 
4: FA2G). FA2G had two factors only for the matrix of 
additive genetic loading factors and in the residual matrix it 
was considered as in SMTMs (standard multi-trait mixed 
models with sire model). 
Traits† LMA BF RF BW HH SC 
LMA 0.25±0.05 0.10±0.12 0.07±0.10 0.03±0.08 -0.08±0.11 0.03±0.08 

BF 0.14±0.02 0.31±0.08 0.31±0.13 -0.01±0.14 -0.33±0.12 0.08±0.15 

RF 0.11±0.02 0.58±0.01 0.23±0.06 0.00±0.11 -0.25±0.12 0.05±0.12 

BW 0.49±0.02 0.22±0.02 0.15±0.02 0.22±0.05 0.03±0.12 0.01±0.07 

HH 0.11±0.02 -0.01±0.02 -0.03±0.02 0.42±0.02 0.30±0.08 -0.07±0.13 

SC 0.21±0.04 -0.02±0.07 0.01±0.07 0.39±0.04 0.20±0.05 0.40±0.11 
†See Table 1 for abbreviations. 
 

Table 4. Estimates of heritability (diagonal), genetic (above 
diagonal) and residual (below diagonal) correlations, with 
standard deviation obtained from the standard multi-trait 
mixed models with sire model (Model 1: SMTMs). 
Traits† LMA BF RF BW HH SC 
LMA 0.29±0.06 0.13±0.15 0.05±0.16 0.35±0.13 -0.14±0.15 0.19±0.17 

BF 0.14±0.02 0.47±0.10 0.62±0.10 0.03±0.17 -0.52±0.12 0.09±0.22 

RF 0.11±0.02 0.57±0.01 0.35±0.08 0.07±0.17 -0.42±0.14 0.05±0.19 

BW 0.49±0.02 0.22±0.02 0.15±0.02 0.28±0.06 0.24±0.15 0.09±0.17 

HH 0.11±0.02 -0.01±0.02 -0.03±0.02 0.42±0.02 0.38±0.08 -0.17±0.21 

SC 0.21±0.04 -0.02±0.07 0.02±0.07 0.39±0.04 0.20±0.05 0.40±0.10 
†See Table 1 for abbreviations. 
 


