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ABSTRACT: The DMU-package for Analyzing 
Multivariate Mixed Models has been developed over a 
period of more than 25 years. This paper gives an overview 
of new features and the recent developments around the 
DMU-package, including: Genomic prediction (SNP-
BLUP, G-BLUP and “One-Step”), Genome-wide 
association studies, Survival models and double 
hierarchical generalized linear mixed models. 
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INTRODUCTION 

DMU is a package primarily used for applications 
in quantitative genetics and genomics. The package 
implements powerful tools to estimate variance 
components, fixed effects (BLUE), and to predict random 
effects (BLUP). Developments of DMU have been driven 
by needs of research projects in applied quantitative animal 
genetics over a period of more than 25 years. A general 
overview of modules in DMU and their functions are 
discussed in Madsen et. al (2010) and in Madsen & Jensen 
(2013). This paper describes some of the new features 
added in the recent years.  

Genomic Prediction 
SNP-BLUP 

The basic statistical model is given by 
𝑦 = 𝜇 + ∑ 𝑋𝑗𝑎𝑗 + 𝑒𝑀

𝑗=1  ,    [1] 
where y is a vector of phenotypes with length N ; aj is the 
effect of SNP j,  Xj is a vector of length N of genotypes of 
the individuals for SNP j, where -1/√Hj denotes 
homozygous for the first allele; 0 denotes heterozygous; 
1/√Hj denotes homozygous for the second allele, and Hj is 
the heterozygosity for the j’th  SNP. 

The modules DMUAI, DMU4 and DMU5 that are 
used for variance components estimation, hypothesis testing 
and for obtaining solutions to MME in large datasets can 
handle models with: Common variance components for all 
SNP effects and any number of SNP groups with common 
variance per SNP group. This latter functionality can be 
used to group SNPs in genomic feature models where SNPs 
are grouped according to gene functioning, metabolic 
pathways, or effect on specific traits.  
 
G-BLUP 

In G-BLUP the additive relationship matrix A, 
which express the expected relationship is replaced by the 
genomic relationship matrix G, which express the realized 
relationship among individuals. G itself is relatively 
straightforward to calculate based on VanRaden (2008),  
but its inverse cannot be set up directly, and must be 

computed using brute force methods. This can be 
computationally demanding and will limit the size of G 
matrices that can be handled to a few hundred-thousand 
individuals, both due to computer time requirement and 
numerical accuracy. Furthermore, G as well as G-1 may be 
dense and G does not necessarily have full rank and no 
exact inverse exists. 

The statistical model is given by 
 𝑦 = 𝑋𝛽 + 𝑍𝑢 + 𝑒 ,   [2] 
where y is a vector of phenotypes, β is the vector of fixed 
effect(s) and u is the vector of breeding values,  X and Z are 
appropriate design matrices. 

The MME for model [2] is 
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where G is the genomic relationship matrix constructed 
from SNP's and G0 is the genetic co-variance matrix.  

The variance components of model [2] can be 
estimated using DMUAI, and prediction can be performed 
with DMU4 and DMU5. The inverse genomic relationship 
matrix (G-1) is used as a variance structure. The model can 
include a number of genomic relationship matrices with 
corresponding co-variance matrices. As for the SNP-BLUP 
model this can be used for genomic feature models where 
the genomic relationship matrices are based on groups of 
SNPs. To facilitate model comparison of nested models by 
Likelihood Ratio test, log(|G|) can be specified as the first 
record in the file containing G-1. 
 
One-Step Method 

The One-Step procedure combining genomic and 
additive relationship developed by Christensen & Lund 
(2010) has been implemented for variance component 
estimation by DMUAI and for prediction in DMU4 and 
DMU5. The One-Step approach can be used for all types of 
model that can be handled by DMU using the combined 
relationship matrix instead of the additive genetic 
relationship matrix based on pedigree information. The 
combined relationship matrix used in One-step (H matrix) 
can be setup with different weight on the additive 
relationship matrix for typed individuals A11 and with an 
adjusted genomic relationship matric G* so that the  
Avg.diag(G*) = Avg.diag(A11) and Avg.offdiag(G*)  = 
Avg.offdiag(A11). 

The computation of the inverse combined 
relationship matrix H-1 is done using DMU1. As the 
genomic relationship matrix for genotyped animals is 
typically dense, the number of typed animals can be a 
limiting factor for size of problems that can be handled due 
to memory requirement. For situations with 20.000 and 
40.000 genotyped animals, the additional memory needed 



by DMU1 for computing H-1 are ~3.5 and 13 GB, 
respectively. The fact that H-1 is less sparse than A-1 also 
increases the memory requirement for prediction (DMU4 
and DMU5). 

Parallel Computation 
The LHS of the MME system in SNP- and G-

BLUP are in general dense and memory  requirements are 
considerably larger compared to traditional animal model 
BLUP. Another consequence of the dense LHS is that the 
traditional use of sparse matrix techniques becomes 
inefficient, therefore, options for using dense matrix 
operation have been implemented in DMUAI and DMU4. 
The implementation is based on LAPACK (Anderson et. al 
(1999)) subroutines parallelized for multi-core (SMP) 
computers based on shared memory architecture. 

The use of dense matrix operations combined with 
parallel computation has shown to give a considerable 
reduction in wall clock computer time. In a commercial 
application (NAV genomic evaluation) with ~ 24.000 typed 
bulls, the execution time for a single trait analysis was 
reduced from ~60 hours to ~45 minutes). 
 

Asymmetric MME 
As shown by Henderson (1984), the MME can be 

rearranged into an un-symmetric system by multiplying the 
random (genomic) part with G. 

� 𝑋
′𝑅−1𝑋 𝑋′𝑅−1𝑍

𝐺𝑍′𝑅−1𝑋 𝐺𝑍′𝑅−1𝑍 + 𝐼⊗𝐺0−1
� ��̂�
𝑢�
� = � 𝑋

′𝑅−1𝑦
𝐺𝑍′𝑅−1𝑦

� 

This formulation do not involve G-1, therefore G 
do not need to be positive definite. Due to the 
multiplication by G, the "Genomic" part of the un-
symmetric MME will typically be the major part of the 
system.  

Rearranging the asymmetric MME as 
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leads to a double iterative solving algorithm, where each 
global iteration consists solving for the non-genomic effects 
followed by solving for the genomic effects. 

Tests of the asymmetric solvers have been 
performed on the G-BLUP model used by NAV for Nordic 
Red Cattle. The data consists of deregressed protein proofs 
for 3662 bulls and the genomic relationship matrix (G) 
included 5287 typed animals. Solving the un-symmetric 
MME required considerable more iterations than solving 
the symmetric MME (Table 1). The solutions from 
symmetric and asymmetric MME were identical and total 
computing time was reduced due to avoiding computing G-
inverse. 

Genome-Wide Association Studies 
Linear mixed models (LMM) are the method of 

choice for genetic association studies in human and other 
organisms due to the advantage of control of false positive 
(FP) associations due to population structure, family 
relatedness and/or cryptic relatedness (Yang et. al (2014)). 
However, LMM for genome-wide association studies 
(GWAS) including large sample sizes is computationally 
exhaustive as millions of genetic markers are analyzed 

individually. DMUAI is efficient to run LMM for GWAS 
studies where the candidate SNP is fitted as fixed 
regression and the random polygenic effect through the 
relationship matrix. The relationships among study 
individuals can be based on either pedigree records or on 
genome-wide markers. A number of haplotype-based 
models can also be analyzed, for example, random 
haplotype model to avoid FPs due to confounding of 
haplotypes within families (Boleckova et. al (2012)) and 
genealogy-based haplotype grouping.  
 
Table 1. Number of iteration needed to obtain converges 
for symmetric and un-symmetric MME. 
IOD solver (DMU5) # of iterations 
Symmetric MME 60 
Un-symmetric MME   
Global 173 
Non-genomic part 173 
Genomic part 570 
 

Survival Models 
A flexible class of multivariate mixed survival 

models for continuous and discrete time with a complex 
covariance structure is implemented in DMU. The 
framework allows properly to handle right censoring, 
truncation, late entry and time-dependent explanatory 
variables. It is possible to combine models based on 
continuous time with models based on discrete time, and 
even generalized linear mixed models, all in a joint 
analysis. This allows to properly treat competing risks 
(Maia et. al 2014 and 2014b). The continuous time models 
implemented are approximations of the frailty model in 
which the baseline hazard function is piece-wise constant. 
The discrete time models used are multivariate variants of 
the discrete relative risk models. The survival models 
implemented include a dispersion parameter, which is 
essential for obtaining a decomposition of the variance of 
the trait of interest as a sum of parcels representing the 
additive genetic effects, environmental effects and 
unspecified sources of variability; as required in 
quantitative genetic applications. 

Double Hierarchical Generalized Linear Mixed Model 
The Generalized Linear Mixed Models (GLMM) 

facilities in DMU can be used for analyzing double 
hierarchical linear models (DHGLM) as proposed by Lee & 
Nelder (2006). Additionally, it is also possible to fit models 
that include genetic effects on both the mean and the 
residual variance (e.g. Rönnegård et. al (2010)).  This can 
be utilized in analyzing effects of canalization. Initial 
results have shown good performance of these methods. 
Unbiased estimates of genetic influence on residual 
variance has been obtained in simulation studies. 

R Wrapper for Special Applications 
General R-interface 

Specifying complex models in DMU can be a 
challenge for the less experienced user. Therefore a general 
R interface (Rdmu) has been developed. This allows 
specifying models in the usual R-format and the interface 



will automatically set up correct models, run the analysis 
and retrieve all results in R objects.  
 
GWAS 
 A setup for GWAS named GENMIX (Genealogy 
Based Mixed Model)  has been developed by Sahana et. al 
(2011). It is based on the general DMU R-interface (Rdmu) 
and  the Blossoc software  (Mailund et. al (2006)).   
 
Survival Models 

A R-library (survDMU) was developed for 
assisting in making analysis involving the survival models 
described above. 
 
Hierarchical Models (Mean and Variance) 

A R-setup for running DHGLM is under 
development. 

AVAILABILITY 
The DMU-packaged is distributed as executable 

files for Linux, Windows and Mac (http://dmu.agrsci.dk ). 
There are no charges for using DMU for research purposes, 
but DMU should be referred in publications by citing the 
"DMU Users Guide". The terms of conditions for 
commercial use (e.g. routine genetic evaluation) can be 
obtained from Center for Quantitative Genetics and 
Genomics, Department of Molecular Biology and Genetics, 
Aarhus University (Per.Madsen@agrsci.dk). The general R-
interface can be obtained from OleF.Christensen@agrsci.dk 
and the survDMU R-library can be obtained from 
Rodrigo.Labouriau@agrsci.dk. For information on 
GENMIX contact Goutam.Sahana@agrsci.dk 
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