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ABSTRACT: Bayesian multiple regression methods are 
widely used in whole-genome analyses by constructing a 
Markov chain with a stationary distribution equal to the 
posterior distribution of unknown parameters. In whole-
genome analyses, chains of about 50,000 samples are 
typically used, for which the computation is intensive. 
Thus, it is desirable if parallel computing, taking advantage 
of multiple cores on computers, could be used to speed up 
Bayesian methods. In this paper, a strategy using 
Independent Metropolis-Hastings (IMH) sampling to 
parallelize Markov chain Monte Carlo (MCMC) sampling 
for whole-genome analyses has been shown. We also 
propose a strategy to construct the proposal distribution in 
IMH. Addressing the heavy computational burden 
associated with Bayesian methods by parallel computing 
will lead to greater use of these methods.  
 
Keywords: whole-genome analyses; parallel computing; 
independent Metropolis-Hastings sampling. 
 

INTRODUCTION 
Bayesian multiple regression methods are widely 

used in whole-genome analyses. Inferences from most 
Bayesian methods are based on samples drawn from 
Markov chains constructed to have a stationary distribution 
equal to the posterior distribution of unknown parameters. 
In whole-genome analyses, chains of about 50,000 samples 
are typically used, which makes the computation intensive. 
Thus, it is desirable if parallel computing, taking advantage 
of multiple computer cores, could be used to speed up 
Bayesian methods. One approach to speed up Bayesian 
methods is to implement parallel computing within each 
sampling, where computations are split up and done in 
parallel on multiple cores (Cheng et al. (2014)). Further, it 
is often suggested that samples can be drawn in parallel to 
obtain a large number of short chains. However, the 
Ergodic theorem of Markov chain theory states that 
statistics computed from an increasingly long chain, rather 
than an increasing number of short chains, converge to 
those from the stationary distribution (Norris (1997)). Thus, 
combining a large number of short parallel chains may not 
yield valid results. 

An alternative strategy using Independent 
Metropolis-Hastings (IMH) sampling has been described by 
Jacob et al. (2011), where a large number of candidate 
samples are obtained independently using parallel 
computing, because the proposal used in IMH is not a 
Markov process. This proposal contrasts to the commonly-
used random walk MH where each candidate depends upon 
the previous sample. In Metropolis-Hastings, including 
IMH, the candidate samples are accepted or rejected 
according to the acceptance probability, which results in a 
Markov chain. In IMH, the time consuming components of 

this acceptance probability can also be computed in parallel 
when the candidate samples are drawn. Thus most 
computations in IMH are done in parallel before the 
candidate samples are accepted or rejected to obtain a 
Markov chain. The acceptance probability in IMH is simply 
computed as the ratio of two known scalars without waiting 
for them to be evaluated.  

The objective of this study is to show how IMH 
can be used to parallelize MCMC sampling for whole-
genome analyses. In this paper, we first described the IMH 
algorithm for parallel computing in general. Then a 
numerical example for the BayesA model (Meuwissen et al. 
(2001)) is given. 

 
ALGORITHM 

In IMH, the candidates 𝑣𝑡  for the unknown 
quantities are independently sampled from a proposal 
distribution 𝑞 (. ). Thus the sampling is easily parallelized. 
The samples obtained in parallel are used to construct a 
Markov chain (𝑢0,𝑢1,𝑢2 … ) with a stationary distribution 
Π(. )  of interest, by accepting candidates according to the 
acceptance probability 𝑟(𝑣𝑡 ,𝑢𝑡−1) = 𝑤 (𝑣𝑡) 𝑤 (𝑢𝑡−1)⁄ , 
where 𝑤(. ) are computed in parallel as described below.  

1. Generate independent candidates 𝑣𝑡 from 
proposal distribution 𝑞 (. )  and compute 𝑤(𝑣𝑡) =
Π (𝑣𝑡)/𝑞 (𝑣𝑡) . This step for different 𝑣𝑡  can be 
done in parallel. Given p processors are available 
for computing, the computing time to obtain k>p 
candidate samples of 𝑣𝑡  is the same as that for 
obtaining k/p samples with single processor. 

2. Once all the candidate samples and 
corresponding 𝑤(. ) are available:  

a. Take any one from the set of candidate 
samples as the first value in the Markov chain: 𝑢0.  

b. Each of the remaining candidates is 
sequentially considered and accepted with 
probability 𝑟(𝑣𝑡 ,𝑢𝑡−1)  to construct a Markov 
chain. This acceptance probability 𝑟(𝑣𝑡 ,𝑢𝑡−1)  is 
obtained with little effort because the two scalars 
in this ratio have already been computed in 
parallel. 

 
NUMERICAL EXAMPLE 

Here we present how IMH can be used to 
parallelize MCMC sampling for the BayesA model:   

𝑦𝑖 = 𝜇 + ∑𝑋𝑖𝑗𝛼𝑗 + 𝑒𝑖 , 
where 𝑦𝑖  is the phenotype for individual i, 𝜇 is the overall 
mean, 𝑋𝑖𝑗 is the genotype covariate at locus j for animal i 
(coded as 0,1,2), 𝛼𝑗 is the average allele substitution effect 
for locus j and 𝑒𝑖  is the random residual effect for 
individual i. 



The prior for 𝜇 is a constant. The prior for 𝑒𝑖 is a 
normal distribution with mean zero and variance 𝜎𝑒2, where 
𝜎𝑒2  follows a scaled inverted chi-square distribution with 
degree of freedom 𝜐𝑒 and scale 𝑠𝑒2 . The prior for 𝛼𝑗  is a 
normal distribution with mean zero and variance 𝜎𝑗2, where 
𝜎𝑗2  follows a scaled inverted chi-square distribution with 
degree of freedom 𝜐𝛼 and scale 𝑠𝛼2. 

Here the target distribution Π(. ) is the joint 
posterior distribution of all unknown parameters 
𝑓(𝜶, 𝜇, 𝝃,𝜎𝑒2|𝒚) , where 𝝃 = (𝜎12,𝜎22,𝜎32, … ) . This target 
distribution can be written as the product of the Gaussian 
likelihood and priors for unknown parameters (Sorensen 
and Gianola. (2002)). The proposal distribution 𝑞 (. )  we 
used is constructed as 

𝑞 (. ) =  𝑓�𝜇,𝜶�𝝃� ,𝜎𝑒2� ,𝒚�∏𝑓�𝜎𝑗2�𝜶, 𝜐𝛼 , 𝑠𝛼2,𝒚�
           ×    𝑓(𝜎𝑒2|𝜇,𝜶, 𝜐𝑒 , 𝑠𝑒2,𝒚)

, 

where 𝝃�  is estimated using a few iterations of the EM 
algorithm (Sun et al. (2012)), 𝜎𝑒2�  is the mean of the prior for 
𝜎𝑒2. Above, the proposal distribution 𝑓�𝜇,𝜶�𝝃� ,𝜎𝑒2� ,𝒚� for 𝜇 
and 𝜶  is a multivariate normal distribution with mean 
𝑪−𝟏𝑾′𝒚 and variance 𝑪−𝟏𝜎𝑒2� , where 𝑪 is 𝑾′𝑾 + 𝑫−1𝜎𝑒2�  , 
𝑾 = [𝟏 ,𝑿]  and 𝑫−𝟏  is a diagonal matrix of elements 
0, 1 𝜎12� , 1 𝜎22� ,⁄ 1 𝜎32�⁄⁄ … . The proposal distributions of 𝜎𝑗2 
and 𝜎𝑒2 are all scaled inverted chi-square distributions; for 
𝜎𝑗2, the scale parameter is (𝛼𝑗2 + 𝜐𝛼𝑠𝛼2) 𝜐𝛼⁄  and the degrees 
of freedom parameter is 𝜐𝛼 + 1; for 𝜎𝑒2, the scale parameter 
is (𝒆′𝒆 + 𝜐𝑒𝑠𝑒2) 𝜐𝑒⁄  and the degrees of freedom parameter is 
𝜐𝑒 + 𝑛, where n is the number of observations and 𝒆 = 𝒚 −
𝟏𝜇 − ∑𝑿𝒋𝛼𝑗 . A large number p of candidate samples from 
this proposal distribution were obtained in parallel, and for 
each sample 𝑣𝑡 , the quantity 𝑤(𝑣𝑡) = Π (𝑣𝑡)/𝑞 (𝑣𝑡)  was 
also computed in parallel. Once all the candidate samples 
and corresponding 𝑤(. )  were obtained, a Markov chain 
with target distribution  𝑓(𝜶, 𝜇, 𝝃,𝜎𝑒2|𝒚) was constructed by 
accepting a candidate into the chain with probability 
𝑟(𝑣𝑡 ,𝑢𝑡−1) = 𝑤 (𝑣𝑡) 𝑤 (𝑢𝑡−1)⁄  in each iteration.  

Simulated data were used to test the performance 
of this approach. The data used for training consisted of 
1,000 observations with 1,000 SNP genotypes and 
phenotypes simulated to have a heritability of 0.5. A chain 
of length 1,000 was used to estimate marker effects. An 
independent dataset of equal size was used for testing. The 
prediction accuracy of the simulated breeding value in the 
test dataset was 0.90 using IMH. In contrast, prediction 
accuracy from single-site Gibbs sampling was only 0.7 
even after a chain of length 10,000. 

 
DISCUSSION 

One approach to speedup Bayesian methods is to 
parallelize the computations such as dot products and vector 
additions that are needed to draw samples (Cheng et al. 
(2014)). In this paper, we have proposed another approach 
where samples are obtained in parallel. The key principle in 
this approach is the use of an independent proposal to draw 
candidate samples in the Metropolis-Hastings algorithm. In 
most Metropolis-Hastings implementations, the proposal is 
constructed using a random walk. While such proposals are 
easy to construct, they cannot be used in parallel. This 

includes the Gibbs sampler. In contrast, while independent 
proposals can be used in parallel, it is not straightforward to 
construct an independent proposal that will result in a chain 
with good mixing performance. Ideally, one would like to 
use a proposal close to the target distribution. In general, 
this may be difficult, especially for high-dimensional 
problems. However, as described below, the “cycle” in the 
Gibbs sampler can be broken to produce an independent 
sampler when marginal modes for certain parameters can be 
computed and sufficient data are available. 

Suppose we want to draw samples from  
𝑓(𝑥1, 𝑥2, 𝑥3) , which does not have a closed form. To devise 
an independent sampler, it is instructive to begin with the 
Gibbs sampler. In the Gibbs sampler, samples for 𝑥1, 𝑥2, 𝑥3 
are drawn from 𝑓(𝑥1𝑡|𝑥2𝑡−1, 𝑥3𝑡−1),𝑓(𝑥2𝑡|𝑥3𝑡−1, 𝑥1𝑡) and 
𝑓(𝑥3𝑡|𝑥1𝑡 , 𝑥2𝑡). However, this is not an independent sampler. 
One strategy to turn this into an independent sampler is to 
draw 𝑥1  from  𝑓(𝑥1|𝑥�2, 𝑥�3), 𝑥2 from 𝑓(𝑥2|𝑥1, 𝑥�3)  and 𝑥3 
from 𝑓(𝑥3|𝑥1, 𝑥2), where 𝑥�2, 𝑥�3  are the posterior mode of 
𝑥2, 𝑥3. This can be justified by showing that 𝑓(𝑥1|𝑥�2, 𝑥�3) is 
approximately equal to 𝑓(𝑥1)  and 𝑓(𝑥2|𝑥1, 𝑥�3)  is 
approximately equal to 𝑓(𝑥2|𝑥1) if 𝑓(𝑥2, 𝑥3)  and 𝑓(𝑥3)  is 
reasonably peaked (Gianola et al. (1986)). This leads to a 
proposal that approximates the target, namely  
𝑓(𝑥3|𝑥1, 𝑥2)𝑓(𝑥2|𝑥1)𝑓(𝑥1). In our numerical example, this 
strategy is used to construct the proposal distribution, where 
components of the posterior mode of 𝝃� approximated from 
a few iterations of the EM algorithm is used to break the 
“cycle” in the Gibbs sampler.  

Instead of using these independent proposals just 
once serially, different permutations of the same samples 
could be used serially in parallel, say p times. Statistics 
computed from p chains of k samples might have smaller 
variances than from a single chain of k samples. A more 
elaborate block IMH with different choices of permutations 
has been studied by Jacob et al. (2011).  

An added benefit of MCMC-based Bayesian 
methods over methods such as the EM algorithm is that 
they provide posterior distributions for parameters of 
interest, which are used to make inferences about these 
parameters. For example, the posterior distribution of 
breeding values can be used to obtain theirs accuracies 
rather than approximations that are typically used. In 
Bayesian whole-genome analyses, the posterior 
distributions can be obtained for the proportion of variance 
attributed to any genomic region to detect causal loci 
(Fernando et al. (2013)).  
 

CONCLUSION 
In this paper, we have described how IMH can be 

used for parallel computing. Since the key principle in this 
approach is the use of an independent proposal, we have 
discussed a strategy to construct an independent proposal. 
A numerical example following this strategy to construct 
the proposal distribution has been shown to perform better 
than the single-site Gibbs sampler. Reducing the computing 
time associated with MCMC-based Bayesian methods by 
parallel computing will lead to greater use of these 
methods, which have many attractive features for whole-
genome analyses.  
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