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ABSTRACT: We used a half sib data structure for a 
growth trait in sheep as a potentially powerful design for 
partitioning the genetic variance across the different 
chromosomes.  Records for post weaning weight were used 
from 2455 merino sheep. The model of analysis accounted 
for population structure by fitting genetic group effects as 
well as the numerator relationship matrix (A) based on 
pedigree. We then fitted the matrix D representing the 
difference between the genomic relationship matrix (G) and 
A.  The matrix G was based on 48,599 SNP markers across 
the entire genome, or on all SNPs of an individual 
chromosome. There was a relationship between 
chromosome length (L) and variance explained (Vgi), but 
we found significant differences in (Vgi/L) between 
chromosomes.     
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INTRODUCTION 
The rapid growth in availability of abundant 

genomic information allows more accurate tracking of 
chromosome segments through a pedigree. Matching such 
data to observed phenotypes allows genome wide 
association studies (GWAS) and genomic prediction of 
genetic merit and genomic selection (GS) (Meuwissen et al. 
(2001)). GWAS studies explicitly try to detect regions 
associated with quantitative trait variation, whereas GS is 
often applied without explicit knowledge of such regions, 
e.g. the so called GBLUP method uses genomic relationship 
treating information about marker genotypes equally across 
the entire genome (Meuwissen et al. (2001), Habier et al. 
(2007)).  

With the ever increasing density of genetic 
markers, there is also an increasing need and ambition to 
work out which variants actually are responsible for the 
observed quantitative genetic variation. However, this has 
proven to be a non-trivial exercise, mainly due to the large 
number of genetic variants (large p) versus the relatively 
small number of data points (small n) combined with the 
small effects of each variant.  Previous studies were unable 
to explain the total genetic variance using different density 
SNPs (Visscher et al. (2007), Yang et al. (2010), Jensen  et 
al. (2012) and Haile-Mariam et al. (2013)).  

One first step to detect how much genetic variance 
is accounted for by different chromosomal regions is to 
work at the chromosomal level. Visscher et al. (2007) and 
Yang et al. (2011) tried to partition the total genetic 
variance into different chromosomes, and they found a 
linear relationship between chromosome length and 
variance explained. This supports the hypothesis of a 
polygenic model, where the total variation is explained by 

many genetic variants, more or less equally distributed 
across the genome. The relationship was stronger for 
human height that for body mass index, indicating that the 
latter trait could be less polygenic. Also, Jensen et al. 
(2012) found a weaker relationship for production and 
fitness related traits in dairy cattle with R2 values for a 
linear regression model of variance explained and 
chromosome length between 0.11 and 0.21.  

The advantage of data on livestock is that the data 
structure is usually based on relatively large half sib 
families. This provides a powerful design for determining 
the segregation based on linkage. The design is not suitable 
for LD mapping; hence the accuracy of mapping QTL 
positions would be low. However, the latter is less relevant 
for determining the amount of genetic variance explained 
per chromosome.    

The objective of this study was to partition the 
genetic variance over the different chromosomes for a 
growth trait in sheep, and to determine whether there are 
large differences between chromosomes, both before and 
after accounting for their length.    

 
MATERIALS AND METHODS 

Data for this study was obtained from the 
Information Nucleus (IN) program of the CRC for Sheep 
Industry Innovation. Details on this program and its design 
are described by van der Werf et al. (2010). The data set 
comprised a total of 2455 purebred merino lambs with 
phenotype, pedigree and genotype data. The animals 
descended from 139 sires and the associated pedigree file 
contained 10,559 animal identities from over 22 
generations. The pedigree information was used to compute 
a numerator relationships matrix (A) for the animals with 
phenotypic records using the R package ‘pedigree’ (Coster 
(2012)). Genotypic information consisted of SNP marker 
genotypes was obtained using the Illumina OvineSNP50 
BeadChip. After quality control and imputing missing 
genotypes with BEAGLE (Browning and Browning 
(2007)), genotype information on 48,599 SNP was used to 
derive a genomic relationships matrix (G) according to 
VanRaden (2008). Phenotypic information on post weaning 
weight (PW) was used in the analysis.  

Models for analysis can be written in matrix 
notation as: y = Xb + Z1ID + Z2m + Qq + e, where the 
vector b included fixed effects of sex of lamb (ram: 1 or 
ewe: 2), birth type/rearing type (single: 1/1, twins: 2/2 or 
triplets: 3/3 and their combinations), management group, 
age of dam and post weaning age. ID is the random additive 
genetic effect of the lamb, m is the maternal permanent 
environmental effect and q is a genetic group effect. The 
genetic group consisted of merino strain where we 
regressed on strain proportion. Strain proportion was 



derived from a deep pedigree analysis. To estimate the 
variance of additive genetic effects we used five different 
models to define the variance structure of ID: 1) var(ID) = 
A 2

aσ  , 2) var(ID) = G 2
gσ  3) var(ID)= G 2

gσ + A 2
aσ  

where the proportion of additive genetic variance was 
estimated by fitting both G and A to account for any 
probable remaining polygenic effect, 4)  var(ID)= A 2

aσ  + 

D 2
dσ where D = G - A and 5) var(ID)= A 2

aσ  + Di
2

diσ  
where Di corresponds to the ith chromosome matrix 
calculated as Di = Gi - A. The first three models were fitted 
to evaluate how the additive genetic variance would be 
partitioned over G and A. The genomic relationship G is an 
estimate of the realized relationship at QTL as opposed to 
the expected relationship defined in A (Goddard et al. 
(2012)). The fourth model was an attempt to separate the 
variance between families from the variance additionally 
explained by genetic markers. The deviation in D reflects 
information provided by the marker genotypes orthogonal 
to the family structure of the data and therefore is expected 
to give an unbiased estimate of the variance of the 
segregating QTL effects. Model 5 was run for each 
chromosome, in an attempt to estimate the variance due to 
QTL effects per chromosome. In model 5 we only fitted 
one D matrix at a time. The variance components were 
calculated using ASReml 3.0 software (Gilmour et al. 
(2009)). 
 

RESULTS 
When A (model 1) and G (model 2) were fitted 

individually, A explained more variation for the trait 
(33.38%) than G (31.83%). The results from model 3 
showed that most of the variance was partitioned toward G 
which agreed with previous reports (Jensen et al. (2012),   
Haile-Mariam et al. (2013)). Analysis using model 4 
showed that A (21.22%) recovers some of the variation 
explained but D still captures most of the variance 
(26.18%).  When fitting model 5 we observed that in 
general the variance explained by pedigree effects 
fluctuated between 5.70 and 6.61 Kg whereas the variance 
explained by each Di varied and was somewhat related to 
the chromosome length (Figure 1). 

Genetic groups were fitted in the model to be able 
to capture the variance explained by different strains of 
merino (Table 1). This component was not counted towards 
the phenotypic variance. Results for PW showed that the 
variance captured by q varied considerably among models, 
for model 1 the value of q was the highest (11.48 Kg) 
whereas in models 2 and 3 of the genetic group variance 
was much lower (3.16 Kg). This suggests that G captured 
some of the strain differences. The genetic group variance 
was also low in model 4 (2.81 Kg) whereas with models 5 it 
varied between 7.74 and 11.48 Kg. Results for maternal 
effects were similar among models, fluctuating between 
2.16 and 2.33 Kg. 

The sum of variance estimates per chromosome 
was higher (8.99 Kg) than the variance explained in the 
models were the full G was fitted (8.02 Kg), suggesting that 
different Di matrices explain still a common variance. A 
positive correlation between variance explained and 

chromosome length was found (Figure 1), agreeing with 
previous reports for human height (Visscher et al. (2007) 
and Yang et al. (2011)); nevertheless the correlation was 
weak (R2=0.32) and marked differences in additive genetic 
variance explained were found for some chromosomes. For 
example, chromosome 8 explaining the higher amount of 
genomic variance (10.36%), followed by chromosome 1 
(9.34%), 6 (8.38%) and 2 (8.16%) and chromosome 5 is 
estimated to contribute 0% variance.  

 
Figure 1. Variance explained by the difference (D) between 
genomic and pedigree relationships, calculated per 
chromosome for post weaning weight using model 5. 

 
 
  The difference between variance explained per 
chromosome and the percentage of expected variance 
explained, under the assumption that the genetic variance is 
proportional to the size of the chromosome, was also 
calculated. Results showed that chromosome 8 performed 
better than expected, explaining 6.66% more, followed by 
chromosomes 6, 20, 12, 14, 22, 11, 23, 25, 10, 13, 24 with 
percentages from 0.43 to 3.50. The rest of the chromosomes 
explained less variation than expected (results not shown).  

 
DISCUSSION 

We attempted to partition the genetic variance 
across the different chromosomes by define a matrix that 
was based on the difference between the expected and the 
realized relationships. The realized relationships are based 
on marker genotypes and do not fully represent the true 
relationships at the QTL. The differences are due to 
incomplete linkage disequilibrium between markers and 
QTL as well as sampling error at the marker genotypes. So 
Table 1. Variance components for post weaning weight 
estimated using different mixed linear models. 
Model¥     q     Va     Vg*     m     e 

1 11.48 6.26  2.24 10.26 
2 3.16  5.83 2.19 10.29 
3 3.16 0.00 5.83 2.19 10.29 
4 2.81 5.23 6.46 2.33 10.64 
5§ 10.16 6.19 0.55 2.25 10.34 

¥1: var(ID)= A 2
aσ , 2: var(ID)= G 2

gσ , 3: var(ID)= A 2
aσ + G 2

gσ , 4: 

var(ID)= A 2
aσ  + D 2

dσ , 5: var(ID)= A 2
aσ +Di

2
diσ  

*Calculated from genomic relationship matrix (G) in the first 3 models 
and from the difference between G and numerator relationship matrix for 
the rest of the models.  
§ Mean values among chromosomes. 
 



we should expect that the genomic component is an 
underestimate of the actual QTL variance at each 
chromosome. We found a higher total variance in models 4 
and 5, which indicates that the D also captures some 
common variance, probably due to population structure not 
captured by the pedigree or by the genetic group effects. 
Nevertheless we can compare the variance explained by 
each Di relative to each other and this gives probably a 
reasonable indication of the relative amount of variation 
explained by each chromosome. Further work can be done 
to check the repeatability of this exercise over independent 
datasets, and whether the chromosomes that explain most 
variation harbor any candidate genes.  

The result found in this study could also be used to 
weight the relationships from different chromosomes 
differently in genomic prediction, i.e. the G matrix based on 
genotypes of each chromosomes are weighted by the 
relative variance explained by that chromosomes. This 
could result in better predictions than GBLUP, or Bayesian 
genomic prediction methods that weight individual loci 
rather than chromosomes. The latter would in principle be 
more precise, but in practice it may not because of the 
difficulty to estimate the variance explained by individual 
loci.  

 
CONCLUSION 

Most of the additive genetic variance for post 
weaning weight can be explained using genotypic 
information from the Illumina OvineSNP50 BeadChip. 
Decomposition of additive genetic variance due to genomic 
relationships into different chromosomes showed that the 
additive genetic variance explained per chromosome is 
related with the chromosome length but significant 
differences were found between chromosomes. 
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