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ABSTRACT: Identification of genes explaining variation 
in quantitative traits or genetic risk factors of human 
diseases requires both good phenotypic- and genotypic data, 
but also efficient statistical methods. Genome-wide 
association studies may reveal association between 
phenotypic variation and variation at nucleotide level, thus 
potentially identify genetic variants. However, testing 
million of polymorphic nucleotide positions requires 
conservative correction for multiple testing which lowers 
the probability of finding genes with small to moderate 
effects. To alleviate this, we apply a gene based association 
approach grouping variants accordingly to gene position, 
thus lowering the number of statistical tests performed and 
increasing the probability of identifying genes with small to 
moderate effects. Using this approach we identify numerous 
genes associated with different types of stresses in 
Drosophila melanogaster, but also identify common genes 
that affects the stress traits. 
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INTRODUCTION 
Identification of genetic variants and genes 

explaining quantitative traits are central topics in modern 
biology ranging from evolutionary genetics to animal and 
plant breeding and human health.  
 Genome-wide association studies (GWAS) utilize 
genetic variation at nucleotide level (single nucleotide 
polymorphism, SNPs) to associate phenotypic variability 
with genetic variation assuming SNPs being in linkage 
disequilibrium with the causal variants. GWAS rarely 
identify all causal genes, and only identify genetic variants 
explaining a small proportion of the total genetic variance 
(Witte (2010)). Variants associated with phenotypes does 
not seem be randomly distributed across genomes, but are 
enriched for genes and biological pathways (Allen et al. 
(2010)). Grouping SNPs by their physical association to a 
gene will likely increase the probability of finding 
association. Firstly, performing millions of independent 
tests require subsequent adjustment because of multiple 
testing. Reducing the number of tests performed by limiting 
to the number of genes allows less conservative adjustment. 
Secondly, genome-wide significant SNPs only capture 
variants with large effects. Aggregating small effects of a 
number SNPs located within genes may increase their 
signal and thus increase the likelihood of detection. 

The objective of this study was to apply a gene 
based association approach to identify genes important for 
different types of stress in fruit flies. We apply our method 
to a public available genetic resource, the Drosophila 

melanogaster Genetic Reference Panel (DGRP) (Mackay et 
al. (2012)).  

 
MATERIALS AND METHODS 

Data. The phenotypic- and genomic data applied 
originate from a public available reference population, the 
Drosophila melanogaster Genetic Reference Panel 
(DGRP) (Mackay et al. (2012)). The population was 
originally caught in Raleigh, North Carolina, USA and 
consists of 200 fully inbred (F≈1), independent lines, 
obtained using 20 generations of full-sib mating.  

Initially SNPs were called from raw sequence data 
(as described in Mackay et al. (2012)) and included with 
coverage greater than 2X but less than 30X for which the 
minor allele frequency was present in at least 4 lines and if 
the SNP was called in minimum 60 lines. We imputed 
missing genotypes using Beagle Version 3.3.1 (Browning 
and Browning (2009)) resulting in a total of 2.5 million 
SNPs distributed among 140 million base pairs across the 
two autosomes (2L, 2R, 3L and 3R) and one sex 
chromosome, X.  
 We used three phenotypes in our analysis; chill 
coma recovery, starvation resistance and startle response 
(Mackay et al. (2012)).  
 Single-variant statistical analysis. Genome-wide 
association of single variants were conducted using linear 
mixed models in R-software (R Core Team (2013)) with 
lme4-package (Bates et al. (2013)); 𝑦 = 𝜇 + 𝐿 + 𝑅 + 𝑆 +
𝑆𝑁𝑃 + 𝜀  with a Gaussian approximation of the traits. 
Phenotypic variances were partitioned between the DGRP 
lines (L, random), sex differences (S, random), replication 
(R, random) and a random error term, ε. Genotype effects 
(SNP, fixed) were assessed by comparing the model to a 
null model neglecting the fixed effect using a likelihood 
ratio test; Λ = 2(𝑙𝑁 − 𝑙𝐺), where lN and lG were the log-
likelihood for the null model and the alternative model 
including the SNP genotype effect. The test statistic, Λ, has 
an approximate χ2-distribution with 1 degree of freedom. 
 Multi-variant statistical analysis. To alleviate the 
challenges posed by type 2 errors when performing high 
numbers of correlated tests, we apply a gene-based 
enrichment test coupled with permutation test to improve 
the statistical power of identifying true associations. We do 
this by grouping SNPs according to their physical location 
within annotated genes (using Drosophila annotation from 
Bioconductor (Carlson (2013))), thus reducing the number 
of tests from millions to ten of thousands.  
 We propose a summary statistic to identify genes 
that can explain the phenotypic variation within the traits. It 
is based on the χ2-values from the association of individual 
genetic variants to the phenotypes using the single-variant 
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approach described above. By summing the χ2-values we 
imitate a genetic model capturing variants with small to 
moderate effects (Jiang and Gentleman (2007); Newton et 
al. (2007)). Using a permutation approach the observed 
summary statistic for a particular SNP set is compared to an 
empirical distribution for the summary statistics of random 
samples of SNP sets of same size. Consider a vector of test 
statistics, one for each SNP tested in the single-variant 
approach, ordered after their physical position of the SNP 
on the genome. As a consequence of linkage disequilibrium 
closely linked SNPs will likely be correlated, which will 
affect the distribution of the summary statistics, thus to 
account for this correlation structure we used the following 
procedure, figure 1. Let the vector of observed test statistics 
be ordered accordingly to the physical position on the 
genome of the corresponding SNPs. SNPs are then mapped 
to genes using the coordinates for the physical location of 
the genes on the genome. Let the elements in this vector be 
numbered 1, 2, …, N. The permutation consists of two 
steps. 1) Randomly pick an element (ej) from this vector. 
Let this jth test statistic be the first element in the permuted 
vector and the remaining elements ordered ej+1, ej+2, …, eN, 
e1, e2, …, ej-1 accordingly to their original numbering. Thus, 
all elements from the original vector are now shifted to a 
new position starting with ej. The mapping of genes is 
however kept fixed as to the original maping. 2) A 
summary statistic is computed for each SNP set based on 
the original SNP set position in the original vector of test 
statistics (figure 1). Hereby the link between SNPs and 
genes are broken while retaining the correlation structure 
among test statistics. Step 1 and 2 are repeated 10,000 times 
and from this empirical distribution of summary test 
statistics for each SNP set a P-value can be obtained. This 
empirical P-value corresponds to a one-side test of the 

proportion of randomly sampled summary statistics that are 
larger than the observed summary statistic. The arbitrary 
significance level was set to 0.01. 
 Genes identified using the method described above 
was compared across traits. This was done by constructing 
an incidence matrix with n rows corresponding to the 
number of SNP sets (n = 14641 genes) and m columns 
corresponding to number of traits (m = 3). If a summary 
statistic for the SNP set was above the significance level the 
corresponding element in the incidence matrix was set to 1, 
otherwise zero. The observed overlap was then compared to 
an empirical distribution of the overlap. For a total of 
10,000 times the elements within each column was 
permutated and the overlap among columns was recorded. 
The probability of the found overlap was estimated under 
the null hypothesis of independence of association among 
traits. We determined the empirical P-value of a one-side 
test as the fraction of all random permutations that was 
larger or equal to the observed overlap among traits at 5% 
level. 
 Population genetic parameters. Variance 
components were estimated using the AI-REML algorithm 
implemented in the DMU software (Madsen and Jensen 
(2012)) by fitting the linear mixed model 𝒚 = 𝑿𝒃 + 𝒁𝒈 +
𝒆, where y is a vector of phenotypes, b is a vector of fixed 
sex effect (𝒃~𝑁(0, 𝑰𝜎𝑏2)) g is a vector of random genetic 
effects (𝒈~𝑁(0,𝑮𝜎𝑔2)) and e is a vector of random error 
terms (𝒆~𝑁(0,𝑫𝜎𝑒2)). X and Z are design matrices relating 
records to fixed and random effects. Using best linear 
unbiased prediction (BLUP) the additive genetic (𝒈�𝑎) and 
genomic values (𝒈�𝑔) were predicted as: 

𝑉𝑎𝑟(𝒚) = 𝑽 = 𝒁 ∙ 𝑉𝑎𝑟(𝒈) ∙ 𝒁′ + 𝑉𝑎𝑟(𝒆) 

𝑽 = 𝒁 ∙ 𝑮 ∙ 𝒁′ ∙ 𝜎𝑔2 + 𝑰 ∙ 𝜎𝑒2 ∙ 𝒈� 

 
Figure 1. Gene-based permutation enrichment test.  
 

 
Figure 2. Network of enriched overlapping genes for chill 
coma recovery and startle response. Black nodes are 
enriched overlapping genes, and grey nodes are predicted 
interacting missing genes (see Warde-Farley et al., (2010)). 
Red edges are co-expressed genes, blue edges are co-
localization, pink edges are physical interactions and green 
edges are shared protein domains.  
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𝒈� = 𝑮 ∙ 𝒁′ ∙ 𝜎𝑔2 ∙ 𝑽−1(𝒚 − 𝑿𝒃�) 

We distinguish between genetic and genomic 
variance using either the assumption of independence 
among lines using an identity matrix as correlation structure 
(G=I) or a correlation structure computed from genomic 
data. In the latter case, G is computed as in VanRaden 
(2008). 

Pairwise genetic- and genomic correlations were 
calculated between 𝑔�𝑎  and 𝑔�𝑔 . Furthermore, the genetic- 
and genomic broad sense heritability for each trait was 
computed as the fraction of additive genetic or genomic 
variance (scaled by the mean of diagonal elements of G) 
explained of total phenotypic variance. 
 

RESULTS AND DISCUSSION 
We used a gene-based approach to identify genes associated 
with stress traits in fruit flies. Grouping SNPs according to 
genes lowered the number of statistical tests considerable. 
Still, at 5% significance level about 730 genes are expected 
to be associated due to chance; we found 736 to 766 genes 
significant in the three traits (table 1). In all cases however, 
we identify more genes than expected. Associated top genes 
for chill coma recovery include Dim1 (neurogenesis and 
mitotic spindle organization), nAChRα4  (ion transport) and 
a10 (response to chemical stimuli) and several genes with 
unknown functions. For startle response we identified Rpk 
(sensory perception to touch) and numerous genes with 
unknown functions. Interestingly, 57 of the 58 genes in 
common for startle response and chill coma recovery are 
connected in one big network (figure 2, created using 
GeneMania, an online tool, that uses data from different 
public databases, and a weighting algorithm so the query 
genes connect as much as possible but also extend the 
network with predicted similar genes, see Warde-Farley et 
al. (2010)). Some of these genes have many connections in 
the network (Grip84, Rpk, Pink1 and Ifc). In particular, 
these genes have known functions in response to perception 
of touch, oxidative stress and oxidation-reduction 
processes. 
 We obtained intermediate broad sense 
heritabilities for the three traits (table 2). The heritabilities 
based on genomic information is overall higher than those 
based on the simple variance structure of independent 
relationships among lines. However, the differences are 
minor and the heritabilities computed on genetic and 
genomic data are interpreted as being equal. 

Pairwise correlations between the genetic and 
genomic values from the BLUP were computed, showing 

no correlations between traits (table 2). Despite lack of 
significant correlations, the multi-variant statistical 
approach showed a significant overlap between enriched 
genes for startle response and chill coma recovery (table 1). 
Our results indicate that although a pair of complex traits 
appears to be genetically uncorrelated they may be 
influenced by genetic variants in common genes.  

The strength of the method used in this study are i) 
it may increase the power to detect genetic variants with 
small effects using prior biological knowledge, ii) 
facilitation of the biological interpretation of significant 
results when used in collaboration with clustering tools and 
iii) the model can easily be extended to other important 
biological groupings, such as biological pathways, gene 
expression data or linkage patterns or other genomic 
features. 

CONCLUSION 
We identified a number of genes associated to stress traits 
in flies. The top ranking genes appear to be part of network 
of functionally related genes. There is a significant overlap 
among the topranking genes across traits although these 
traits are genetically uncorrelated. 
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Table 1 Number of associated genes and number of 
overlapping genes  

 Starvation Startle  Chill coma 
Starvation 753   
Startle 38 (0.54) 736  
Chill coma 34 (0.86) 58 (0.02) 766 
The significant level of overlap between phenotypes is in parenthesis. 
Numbers of associated genes within trait are in bold and significant 
overlaps between traits are highlighted with red. 
 

Table 2 Genetic- and genomic correlations, below and 
above diagonal elements respectively.  

 Starvation Startle  Chill coma 
Starvation 0.38 : 0.46 0.02 (0.77) -0.01 (0.92) 
Startle 0.11 (0.17) 0.44 : 0.50 0.00 (0.97) 
Chill coma 0.03 (0.67) 0.01 (0.89) 0.37 : 0.42 
P-values of no correlation are in parenthesis. Diagonal elements are 
estimated broad sense heritability for each trait; (genetic heritability : 
genomic heritability). 
 


