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ABSTRACT: Genome wide association study (GWAS) 
was performed in 720 Nellore bulls and steers for dry matter 
intake (DMI), average daily gain (ADG), feed conversion 
ratio (FCR) and residual feed intake (RFI), using 
GRAMMAR-Gamma association test. Genes within 50kb 
flanking regions of SNPs with the highest association with 
the phenotypes were extracted, and pathway analysis was 
performed on the KEGG and DAVID databases. GWAS and 
search for genes/pathways were performed in the statistical 
environment R by GenABEL and NCBI2R packages, 
respectively. Several genomic regions that were 
significantly associated with phenotypes (p=9.27×10-5) were 
identified by GWAS. Near these regions, many genes were 
found for the four phenotypes studied (e.g. ARG2, ATP8A1, 
KCNJ, PLAG2G7 and ZNF746). The analysis identified 
three main metabolic pathways that influence the four 
phenotypes concomitantly. These processes are mainly 
related to ion transport (aldosterone-regulated sodium 
reabsorption), body composition (T cell receptor signaling 
pathway) and control of feed intake (proteoglycans). 
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Introduction 
 

Feed intake is very important in livestock 
production from an economic perspective. Growing and 
finishing cattle in feedlots is considered a promising 
solution to reduce deforestation of tropical forests and to 
reduce methane emissions. 

 
However, expenditure on feed in feedlots 

represents the largest costs variable (Anderson et al., 2005). 
Therefore, these animals must be efficient in using food for 
their growth, or in other words, they must have good feed 
efficiency. Intake, weight gain and feed efficiency are the 
main measures for feedlot finishing systems (Nkrumah et 
al., 2007), together with meat quality. 

 
To better understand these traits, several studies 

were conducted in beef cattle involving genomic 
information (Barendse et al., 2007; Moore et al., 2009; Rolf 
et al., 2012; Lu et al., 2013). However, there are still only a 
few genome-wide association studies on Bos indicus, 
especially for feedlot traits in Nellore cattle. 

 
Genome-Wide Association Studies (GWAS) with 

dense panels of genetic markers can pinpoint genomic 

regions that influence these phenotypes (Rolf et al., 2012). 
Systems genetics, first proposed in livestock / animal 
biosciences by Kadarmideen et al. (2006), is an area of 
genetics within the context of system biology and it 
combines GWAS results and information genome-wide 
gene expression and metabolic pathways data. Systems 
genetics approaches have been shown to be crucial for 
understanding the biological role of genetic variants and 
genes that are identified by GWAS. We use this approach in 
searching for genes and biological processes involved in the 
regulation of these feed intake/efficiency traits and provide 
insights into the physiological relationship between feed 
intake, efficiency and weight gain. These biological 
processes are not yet well described for Nellore cattle in the 
literature so far. 

 
The objective of the study is to conduct GWAS and 

system genetic analyses of feed intake, feed efficiency and 
weight gain and reveal key genes / genetic variants and 
physiological processes that are related to the regulation of 
feed intake/efficiency and performance traits. 

 
 

Materials and Methods 
 

Phenotypic data. Data of 720 male Nellore 
(550±115 days of age and 380±51 kg), collected in 
experiments performed in Brazil from 2007 to 2012, were 
used in this study. The animals had been evaluated for 
average daily gain (ADG), dry matter intake (DMI), residual 
feed intake (RFI) and feed conversion ratio (FCR). These 
phenotypes were tested for normality (Shapiro-Wilk) and 
homoscedasticity of residues (Breusch-Pagan). 
Additionally, outlier observations departing ±3 standard 
deviations from the average were excluded from further 
analyses. 

 
Genome wide association studies. The 720 animals 

were genotyped in two different commercial panels (384 
young bulls in Illumina BovineHD with 777,692 SNPs and 
336 young bulls and steers in Illumina BovineSNP50 with 
54,609 SNPs). To combine the information from two panels 
of markers an imputation study was performed in software 
FImpute v2.2 (Sargolzaei et al., 2012). Only markers 
imputed with over 95% accuracy were added in the data set. 
The data were subjected to quality control in which SNPs on 
sex chromosomes, with a minor allele frequency below 2%, 
with call rate below 95% and the Fisher exact test for 



Hardy-Weinberg equilibrium less than 1x10-5 were excluded 
analysis. After the imputation study and quality control 
290,620 SNPs were retained in 672 animals. The association 
test used was GRAMMAR-Gamma (Svishcheva et al., 
2012). The contemporary group and age were included as 
fixed effects. GWAS for each phenotype was performed in 
GenABEL v1.7-6 (Aulchenko et al., 2007) package of R 
statistical environment (R Core Team 2013). The genome-
wide significance threshold was determined after applying a 
modified version of Bonferroni correction to account for 
multiple testing (Gao et al., 2008). This was computed as 
∝
!"!#

 where α is the nominal significance threshold of 0.05 
and nsnp is total number of SNPs used in the analysis 
(Mantel, 1980), which resulted in α = 9.27 × 10-5. 

 
Finding genes in the vicinity of associated SNPs. 

The gene set associated with each trait was determined by 
selecting genes located within 50 kilobases flanking regions 
of each significantly associated SNP using the function 
GetRegion in the NCBI2R package (Melville, 2014) 
available within the R (R Core Team, 2013). 

 
Pathway analyses. Pathway analyses were based 

on information available within the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) 
(http://www.genome.jp/kegg/). Firstly, genes were assigned 
to biological pathways using GetPathways function 
available within NCBI2R package (Melville 2014). 
Subsequently, the number and names of genes in each 
pathway was determined using a mapPathwaytoname 

function (http://biobeat.wordpress.com/category/r/). To 
determine KEGG pathways significantly associated with 
different traits, a Fisher’s exact test was implemented in R 
to test if genes contained within the geneset for each trait 
were overrepresented amongst all genes contained in any 
given pathway. Since Bos indicus genome is poorly 
annotated, functional annotation of the genesets was also 
performed using DAVID Gene Functional Classification 
Tool (Huang et al., 2009) against both bovine (Bos Taurus) 
and human backgrounds. 

 
Results and Discussion 

 
Association analysis. The number of SNPs with 

different ranges of genome-wide (GW) statistical 
significance of associations (p-values) are shown in Table 1. 
Figure 1 shows the Manhattan plots of association tests for 
ADG, DMI, FCR and RFI with cut-off thresholds 
represented as the modified Bonferroni. 

 
Table 1. Number of SNPs in each probability (p-value) 
range in the association test 
Trait ≤ 

0.001 
0.001≥ 
p ≤0.01 

0.01≥ p ≤0.05 

ADG 335 1618 6907 
DMI 520 2225 11,736 
FCR 346 3019 11,934 

RFI 504 2527 12,046 
 
 

	
  
Figure 1: Manhattan plots of –Log (p-value) for average daily gain (ADG), dry matter intake (DMI), feed conversion 
ratio (FCR) and residual feed intake (RFI) 
The horizontal lines represents the Bonferroni modified significance threshold (α = 9.27 × 10-5).	
  



ADG is affected by GW significant SNPs on 
chromosome 3, 6 and 10. For DMI, chromosomes 4 and 23 
harbours GW significant SNPs. For feed efficiency traits, 
GW significant SNPs were on chromosomes 10, 15, 19, 23, 
25 and 29 for FCR and 4, 8, 14 and 21 for RFI. 

 
System genetics. Based on results from GWAS , a 

total of 35 SNPs associated with ADG, 43 SNPs associated 
with DMI, 139 SNPs associated with FCR and another 44 
SNPs associated with RFI were used to locate genes within 
50 kb flanking regions for gene set enrichment analyses. 
Several genes were found in genomic regions near these 
GW significant SNPs. Resulting in genesets containing 32 
genes for ADG, 37 genes for DMI, 95 genes for FCR and 50 
genes for RFI. Overrepresentation analyses identified one 
KEGG pathway associated with FCR and another two 
associated with RFI (Table 2). 

 
Table 2. KEGG pathways found in enrichment analyzes 
of feed intake, efficiency and performance traits in 
Nellore cattle 
Pathway* A B C D p Trait 

1 3 39 92 32568 0.006 FCR 
2 3 106 47 32501 0.011 RFI 
3 3 222 47 32385 0.045 RFI 

*1 = aldosterone-regulated sodium reabsorption, 2 = T cell 
receptor signaling pathway, 3 = Proteoglycans 
A – Frequency in Geneset, B – Frequency in Genome, C – 
Missing in Geneset, D – Missing in Genome 

 
 
Aldosterone-regulated sodium reabsorption is 

mainly related to the renal reabsorption of sodium under the 
influence of aldosterone that is released from the adrenal 
glands. Mineral reabsorption is known to be an energetically 
expensive process and renal mineral reabsorption alone 
accounts for as much as 10% of the total maintenance 
energy requirement (Balaban and Mandel 1980, Summers et 
al., 1988, Kies et al., 2005). Therefore, it is possible that 
fluctuations in sodium reabsorption indirectly influence feed 
efficiency by regulating energy expenditure. 

 
T cell receptors are crucial regulators of cell-

mediated immunity, besides other cellular signaling 
pathways that regulate cell fate. While the biological 
mechanisms enabling T cell receptors to influence feed 
efficiency are not clear, the T cell receptor signaling 
pathway has been previously found to be associated with 
RFI in Angus cattle (Rolf et al., 2012). Members of this 
pathway are also known to be upregulated in adipose tissue 
of pigs differing in feed efficiency in response to caloric 
restrictions (Lkhagvadorj et al., 2010). 

 
Finally, an additional KEGG pathway 

‘proteoglycans’ found to be associated with RFI, and refers 
to the role that proteoglycans like hyaluronan, syndecans, 
glypican, perlecan and syndecans, play in influencing tumor 
progression. Some of these proteoglycans have also been 
linked with feed intake. For example, syndecan-3 (cell 

surface proteoglycan that mainly act are receptors) 
expression on hypothalamic neurons expressing MC3R and 
MC4R is known to regulate appetite and feed intake (Gantz 
and Fong, 2003). Therefore, it is possible that other 
proteoglycans also play specific roles that contribute to the 
overall regulation of feed intake. 

 
Conclusion 

 
Several genomic regions along the autosomal 

chromosomes were related to feed intake, feed conversion 
ratio, residual feed intake and weight gain in the association 
study. Many genes were found to be related to these traits, 
like AKT1, ARG2, ATP8A1, KCNJ, PLAG2G7, SLC12A2 
and ZNF804B. 

 
However, systematically three major physiological 

processes related to all measures together were highlighted. 
These pathways are mainly related to the energy spent on 
maintenance of the ionic transport, body composition and 
possible regulatory processes of appetite. These results are 
consistent with the literature that links these pathways as 
being fundamental for expression of these phenotypes in 
animals. 
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