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ABSTRACT: Five SNPs were analyzed across 4,801 
Holstein-Friesian cows, including three QTN for milk fat 
yield: DGAT1, GHR, and AGPAT6; a QTN for stature: 
PLAG1; and a control SNP with no effect on milk fat yield. 
Dominance was observed for DGAT1, AGPAT6 and 
PLAG1. A base model of 35,000 SNPs was run in GenSel 
using BayesB. In addition to the base model 1) SNP dosage 
was fit as a random covariate, or 2) SNP genotype was fit 
as a fixed covariate, or 3) SNP dosage was fit as a fixed 
covariate. Including these QTN as random covariates 
increased accuracy of direct genomic value prediction. 
Including QTN as fixed covariates slightly decreased 
accuracy and increased bias. Including DGAT1 as a fixed 
covariate decreased bias. These results suggest inclusion of 
QTN genotypes can potentially increase accuracy and 
decrease bias of DGV, although only slightly. 
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Introduction 
 

The availability of low cost SNP chips has 
facilitated use of genomics for estimation of breeding 
values. One approach generates direct genomic values 
(DGV) from genotypes at SNPs in concert with their 
estimated effects. Accurate DGV are essential to prevent 
buildup of inaccuracies in pedigrees comprising multiple 
generations of young and unproven parents. Causal 
mutations have been identified in many species across 
several traits  (Grisart et al. (2002), Thomsen et al. (2004), 
Johnson et al. (2009)), each of which could be used to 
increase accuracies of genomic prediction. These causal 
mutations, which influence quantitative traits, are termed 
quantitative trait nucleotides (QTN). The integration of data 
from SNP chips and genotyped QTN has potential to 
increase accuracy of DGV and improve genetic gain. Milk 
fat yield is an economically important trait in dairy cattle, 
because milk fat is in many consumer products.  Given its 
importance, many farmers are paid directly for this trait. 
The objective of this study was to estimate the effect of five 
QTN on milk fat yield in the New Zealand Holstein-
Friesian population and evaluate the effects on accuracies 
and bias by including them as a random covariate, fixed 
covariate or a fixed class effect in addition to 50k SNP 
routinely used in genomic prediction models. 

 
 
 
 

Materials and Methods 
 

Data. Deregressed Estimated Breeding Values 
(DEBV) for milk fat yield were collected on 4,801 
Holstein-Friesian females. These females had been 
genotyped at five QTN: three causal mutations for milk fat 
yield: DGAT1 (Grisart et al. (2002)), GHR (Blott et al 
(2003)), and AGPAT6 (Littlejohn et al. (2014)); one causal 
mutation for stature, a trait that has been shown to be 
correlated with milk fat yield (Brotherstone (1994)): 
PLAG1 (Karim et al. (2011)); and a randomly selected SNP 
on chromosome 8 that has no known association with any 
selected trait: CHR8. In addition, these cows were 
genotyped on a parentage panel including 20,000 SNPs that 
were imputed to 35,000 SNPs (35k) comprising high 
quality SNPs present on the Illumina BovineSNP50 and 
BovineHD panels. 

 
Model. The BayesB method was run in GenSel 

(Fernando and Garrick (2009)) with five-fold cross 
validation and 2.5% of SNPs assumed to have an effect on 
the trait, for all the following models. The base model, 
relied on SNPs in the 35k set that are in LD with the five 
QTN to pick up their effect. Three models were run in 
GenSel for each of the QTN independently and for all QTN 
together: 1) Random Covariate: 35k set plus allele dosage 
fit as a random covariate; 2) Fixed Covariate: 35k set plus 
allele dosage fit as a fixed covariate; and 3) Fixed Class: 
35k set plus SNP genotype fit as a fixed class. 

 
Estimation of QTN Parameters. The effect of 

each of the five QTN was estimated based on genetic 
variance explained by the window when each of these SNPs 
were added to the base model as random covariates. The 
allele substitution effect, alpha, was calculated for each 
QTN based on the regression coefficient for SNP dosage in 
the Random Covariate model. Classical additive (a) and 
dominance (d) effects were calculated based on the 
genotype effect estimates obtained by fitting the Fixed 
Class model. 

	
  
Estimation of Prediction Accuracy. Accuracy 

was defined as the correlation between DGV and DEBV. 
Bias was represented by the regression coefficient of DEBV 
on DGV. A paired t-test was performed comparing each 
correlation and regression coefficient to those for the base 
model. Each cross-validation set was paired because they 
comprise the same animals. 

 



Results and Discussion 
 

Estimation of QTN Parameters. Minor allele 
frequency was > 0.05 for all QTN (Table 1) indicating that 
QTN effects should be able to be reasonably accurately 
estimated. DGAT1, GHR, AGPAT6 and PLAG1 all deviate 
from Hardy Weinberg Equilibrium. This is not surprising 
because they are QTN for a selected trait. It is common to 
remove SNPs that fail the test for Hardy Weinberg 
Equilibrium, however these should remain in a genomic 
prediction analysis due to having a proven effect on milk fat 
yield. The SNP on chromosome 8 was a reference SNP, and 
passes the test for Hardy Weinberg Equilibrium which 
means that genomic region is likely not under strong 
selection. 

 
Table 1: Summary statistics for the five quantitative 
trait nucleotides (QTN) 
QTN Minor Allele Frequency HWE P-Value 
DGAT1 0.49 < 0.001 
GHR 0.09 0.042 
AGPAT6 0.34 < 0.001 
PLAG1 0.26 < 0.001 
CHR8 0.22 0.557 
 
 
Table 2: SNP effects for the five quantitative trait 
nucleotides (QTN) 

QTN 
1Mean 

Variance 
Window 

Fit2 Alpha3 a3 d3 

DGAT1 22.98* 100 9.54* 9.48* -1.93* 
GHR 0.32* 55 4.32* 4.85* 0.60 
AGPAT6 0.17* 57 2.16* 1.48* 3.32* 
PLAG1 0.04* 38 1.45 2.24* 2.96* 
CHR8 0.02* 28 0.20 1.64 1.24 
* Value is statistically different from zero with α = 0.05 
1  Posterior probability of  the mean variance explained by the window  
   containing that QTN in the random covariate model as a percent of  
   genetic variance. 
2  Posterior probability of association for the window containing that QTN  
   in the random covariate model as a percent. 
3  Units are kg/lactation. 

 
	
  
The 1Mb window that contains DGAT1 explains 

the most genetic variance, followed by windows containing 
GHR and AGPAT6, then PLAG1 with CHR8 having 
smallest effect (Table 2). The posterior probability of 
association followed almost the same order, with GHR and 
AGPAT6 interchanged. As expected, the three major QTN 
explain the most variance, the QTN for the correlated trait 
explains a little genetic variance and the SNP with no 
known effect explains almost no genetic variance. All 
values were significantly different from zero. 

	
  
The allele substitution effect, alpha, is significantly 

different from zero for all three QTN but not significantly 
different from zero for PLAG1 or CHR8 (Table 2). Alpha is 
largest for DGAT1 at 9.54 kg/lactation. The next largest 
allele substitution effects are GHR and AGPAT6. The allele 

substitution effect for CHR8 is only 0.2 kg/lactation, not 
significantly different from zero. 

	
  
The additive effect was significant for all QTN 

except CHR8 (Table 2). The additive effect was largest for 
DGAT1 but smaller than its allele substitution effect, due to 
dominance for this QTN. The next largest additive effect 
was for GHR, followed by PLAG1 then AGPAT6. CHR8 
had the smallest additive effect, which was not significant. 

	
  
DGAT1, AGPAT6 and PLAG1 all showed 

significant dominance (Table 2). While Grisart et al. (2002) 
did not find significant dominance in DGAT1 in this 
population, these results are consistent with dominance 
observed by Kuehn et al. (2007) in German Holstein cows, 
showing that heterozygotes have lower milk fat yield than 
the midpoint of the two homozygotes. There is evidence 
that the DGAT1 heterozygote has a different mean milk fat 
yield than the qq homozygote (p << 0.001) so DGAT1 
shows partial dominance. Due to AGPAT6 only recently 
being identified as a causal mutation this is the first instance 
of its dominance being reported. There is evidence 
AGPAT6 heterozygotes have different mean milk fat yield 
than QQ homozygotes (p = 0.03), suggesting over-
dominance. The results for PLAG1 are consistent with 
Littlejohn et al. (2012) who showed there may be 
dominance in PLAG1 in this population in respect to 
stature. There is no evidence the PLAG1 heterozygote has 
different milk fat yield than the QQ homozygote (p = 0.51), 
indicating complete dominance. The presence of dominance 
in GHR for milk fat yield has not been well-reported, 
however in this study it is not significant (p = 0.60).  

 
Estimation of Prediction Accuracy. The base 

model has an accuracy of 0.406 and a regression coefficient 
of 1.154 (Table 3). 
	
  

Compared to the base model, accuracy of DGV is 
increased slightly, but significantly, by addition of all QTN 
simultaneously as random covariates in the model, but 
decreased significantly by including them as fixed 
covariates (Table 3). There is no significant change in 
accuracy when these genotypes were fit as fixed classes. 
The regression coefficient is significantly different from the 
base model when all QTN are fit as a fixed covariate but 
not when fit as a random covariate or a fixed class. 
However, bias is higher when all QTN are fit as covariates. 
When all QTN are fit as random covariates the model can 
take into account any variation not captured by LD with the 
35k markers, so accuracy increases. When fitting QTN as 
fixed covariates dominance at those loci is not taken into 
account which may cause the decrease in accuracy and 
increase in bias.	
  	
  

	
  
Including DGAT1 as a random covariate, fixed 

covariate or fixed class does not impact accuracy of DGV 
prediction, however bias is decreased when DGAT1 is fit as 
a fixed covariate (Table 3). The bias when DGAT1 
genotype is fit as a fixed class is actually lower than when 



DGAT1 is fit as a covariate, however the bias is not 
significantly different from that in the base model. These 
results suggest that while including DGAT1 may not have 
an effect on accuracy, it may slightly reduce bias of DGV 
estimates. One possible reason why such a large QTN 
(Table 2) does not have any impact on accuracy when 
smaller QTN do (Table 3) is because there is a SNP in the 
35k subset that is almost in complete LD with DGAT1 in 
this population (Figure 1) and this SNP may be picking up 
the effect of DGAT1.  
 
Table 3: Accuracy and bias of genomic prediction 

Model1,2 Accuracy (s.e.)3 Bias (s.e.) 4 
Base 0.406 (0.009) 1.154 (0.035) 
1) All 0.407 (0.009)* 1.155 (0.035) 
2) All 0.372 (0.008)* 0.726 (0.021)* 
3) All 0.408 (0.006) 1.102 (0.039) 
1) DGAT1 0.406 (0.009) 1.154 (0.035) 
2) DGAT1 0.406 (0.009) 1.144 (0.034)* 
3) DGAT1 0.406 (0.008) 1.135 (0.037) 
1) GHR 0.407 (0.009) 1.156 (0.035) 
2) GHR 0.409 (0.007) 1.141 (0.031) 
3) GHR 0.409 (0.007) 1.140 (0.032) 
1) AGPAT6 0.407 (0.009) 1.156 (0.035) 
2) AGPAT6 0.407 (0.009) 1.146 (0.036) 
3) AGPAT6 0.407 (0.009) 1.145 (0.037) 
1) PLAG1 0.406 (0.009) 1.155 (0.035) 
2) PLAG1 0.405 (0.008) 1.146 (0.037) 
3) PLAG1 0.406 (0.008) 1.145 (0.035) 
1) CHR8 0.406 (0.009) 1.155 (0.035) 
2) CHR8 0.406 (0.008) 1.153 (0.035) 
3) CHR8 0.406 (0.008) 1.148 (0.032) 

* Value is significantly different from base model at α = 0.01 for a paired  
    t-test, pairing cross-validation sets. 
1  1 = Random Covariate, 2 = Fixed Covariate, 3 = Fixed Class 
2  All refers to all five QTN fit simultaneously 
3  Correlation between DGV and DEBV. 
4  Regression coefficient for DGV on DEBV. 

 
	
  
While including GHR in the model does not 

significantly change results from the base model its 
inclusion in any form gives the highest accuracy of any of 
the models. It is possible that, given the relatively low 
minor allele frequency of GHR (Table 1), that there were 
insufficient qq homozygotes to get significant results for 
this QTN. 

	
  
Including AGPAT6 does not have significant effect 

on either accuracy or bias of DGV prediction (Table 3).  
While the difference is not significant, including AGPAT6 
gives slightly higher accuracy and lower bias for all models. 

 	
  
Fitting either PLAG1 or CHR8 did not have 

significant effect on accuracy or bias. These results were 
expected from fitting two SNPs that do not have a large 
effect on milk fat yield. 

 
 
 

Figure 1. LD plot from Haploview for the 1Mb window 
that includes the DGAT1 mutation with R2 values  

 
 

Conclusion 
 
Allele substitution and additive effects were both 

consistent with estimates of genetic variance explained by 
each of the five QTN. Significant dominance was observed 
at three QTN: DGAT1 (partial), AGPAT6 (over) and 
PLAG1 (complete). 

	
  
Including all five QTN as random covariates 

slightly increased the accuracy of prediction compared to 
the base model but fitting them as fixed covariates 
significantly decreased accuracy of prediction and increased 
bias. While not significant, it appears that including QTN as 
either a fixed covariate or fixed class will increase the 
accuracy and decrease the bias, although only to a small 
extent, however more animals will be needed to confirm 
these findings. While some of these changes are significant, 
including these QTN does not have a sufficient increase in 
accuracy or bias to make a difference in overall genetic 
gain. 
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