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ABSTRACT: Our objective was to investigate the 
potential benefits of using sequence data to improve 
across breed genomic prediction, using data from five 
French and Danish dairy cattle breeds. First, QTL for 
protein yield were detected using high density genotypes. 
Part of the QTL detected within breed was shared across 
breed. Second, sequence data was used to quantify the 
loss in prediction reliabilities that results from using 
genomic markers rather than the causal variants. 50, 100 
or 250 causative mutations were simulated and different 
sets of prediction markers were used to predict genomic 
relationships at causative mutations. Prediction of 
genomic relationships at causative mutations was most 
accurate when predicted by a selective number of markers 
within 1 Kb of the causative mutations. Whole-genome 
sequence data can help to get closer to the causative 
mutations and therefore improve genomic prediction 
across breed. 
Keywords: dairy cattle; across breed; genomic 
prediction; QTL 
 
 

Introduction 
 

Genomic selection has been rapidly integrated in 
dairy cattle breeding programmes over the past years. The 
accuracy of genomic predictions depends on several 
factors, including the size of the reference population and 
the amount of linkage disequilibrium (LD) between 
genomic markers and quantitative trait loci (QTL) 
(Goddard et al., 2009). Sharing of reference populations 
between breeds could benefit small breeds. The amount of 
long-range LD is, however, much lower across breed than 
within breed (de Roos et al., 2008), reducing the accuracy 
of genomic selection across breeds. Consequently, across 
breed predictions has resulted in improved predictions for 
closely and moderately related breeds (Brøndum et al., 
2011) while little or no improvements are reported for 
distantly related breeds (Erbe et al., 2012). Increasing the 
marker density by the inclusion of sequence data could 
help to increase the accuracy of genomic predictions. The 
objective of this study was to investigate the potential 
benefits of using sequence data to improve genomic 
prediction across distantly related breeds. The study 
included two parts. A prerequisite for accurate across 
breeds predictions is that breeds share a substantial 
amount of the genetic variance. Therefore the first part 
studied the proportion of QTL shared across breeds. 
Assuming that QTL are shared, association between 
markers and QTL must be conserved across breeds. The 

second part of the study attempted to assess how close 
markers need to be to the causal variants to efficiently use 
this common variance in predictions. In this second part, 
sequence data was used to quantify the loss in prediction 
reliabilities that results from using different sets of 
genomic markers rather than the true causal variants (de 
los Campos et al., 2014), when reference animals are from 
another breed.   

 
Materials and Methods 

 
Data. The dataset used for QTL mapping 

consisted of 5642 Nordic Holstein, 3130 French Holstein, 
1238 Danish Jersey, 2236 Montbéliarde, 1970 Normande, 
and 1019 Danish Red bulls. Bulls were genotyped with 
the Bovine SNP50 BeadChip® or the Bovine HD 
BeadChip®. For bulls genotyped with the 50K chip, HD 
genotypes were obtained by imputation. Imputation of 
Nordic Holstein, Danish Jersey and Danish Red was done 
with IMPUTE2 (Howie et al., 2009) and imputation of 
French Holstein, Montbéliarde and Normande (Hozé et 
al., 2013) with Beagle 3.0.0 (Browning et al., 2006). For 
the second part of the study, the estimation of genomic 
relationships within and across breed, sequences of 122 
Holstein, 27 Jersey, 28 Montbéliarde, 23 Normande and 
45 Danish Red bulls were used. Variant calling was 
performed using GATK (DePristo et al., 2011).  
 

QTL detection. The following single marker 
sire model was used for QTL detection: 

	
  

ijeijbgiSijy +++= µ
 

 
where yij equals the deregressed proof of protein 

yield for individual j with sire i, Si the effect of sire i, gij 
the genotype (0, 1 or 2 for respectively homozygous for 
allele 1, heterozygous and homozygous for allele 2) of 
individual i with sire j and e the random residual. A 
significance threshold of p ≤ 10-6 was used to detect QTL 
within each breed. A QTL was considered as shared 
across two breeds if, for a QTL detected in the first breed, 
there was a marker with a p-value ≤ 10-5 within a distance 
of 1 Mb in the second breed.  

 
Simulated causative mutations and prediction 

markers. To quantify the loss in prediction reliability 
resulting from using genomic markers rather than the 
causal variants, 50, 100 or 250 causative mutations were 
randomly sampled from all single nucleotide 



polymorphisms (SNP) segregating in at least one of the 
five breeds on chromosome 1. Part of the non-causative 
SNP was used as prediction markers according to 15 
scenarios. In scenarios 50K and HD, the markers were 
those from the Bovine SNP50 BeadChip® (3229 markers) 
and Bovine HD BeadChip® (46,243 markers): In 
scenarios n50K and nHD, an equivalent number of 
markers was randomly sampled on the sequence. In the 
100K scenario, 100,000 SNP were randomly selected. In 
another batch of scenarios, markers were selected at 
different distances from each causal mutation. The 50K 
and HD scenarios selected the SNP from the 50K or HD 
chips closest to each causative mutation. In the 1b, 1Kb, 
5Kb, 10Kb, 25Kb, 100Kb, 500Mb and 1Mb scenarios, all 
SNP in two 1 Kb intervals on both sides of the causative 
mutations were selected, with a distance between 
causative mutation and interval of 1b, 1Kb, 5Kb, 10Kb, 
25Kb, 100Kb, 500Mb or 1Mb. Each scenario was 
repeated 50 times. 

 
Genomic relationships. For each scenario, two 

genomic relationship matrices (VanRaden, 2008) were 
constructed, the first using the causative mutations and 
the second using the prediction markers. This was done 
for all breeds separately, as well as for all breed 
combinations (combining two breeds at the time). 
Subsequently, the loss in prediction reliability resulting 
from using genomic markers rather than the causal 
variants was assessed by estimation of the regression of 
genomic relationships at prediction markers on genomic 
relationships at causative mutations (bn+1) following de 
los Campos et al. (2013): 

	
  

iininnin GbG ,,11,1 ++++ += ξ  
 
where { nnn GG ,11,1 ,..., ++ } and { nnn GG ,11,1 ,..., ++ }  are the 
genomic relationships between individual n+1 and all 
other n individuals at respectively prediction markers and 
causative mutations and iin ,+ξ  equals the residual 

orthogonal to nnG ,1+ . The minimum reduction of 

prediction R2 equals 2
1)1(1 +−− nb . 

 
Results and Discussion 

 
Table 1 shows the number of QTL detected 

within each breed and the proportion of these QTL shared 
across breeds. The number of QTL detected varied 
strongly between breeds, from 449 in Danish Holstein to 
28 in Danish Red. This can be explained with the 
difference in number of individuals used for each breed. 
For example, while there were 5642 Danish Holstein 
individuals in the dataset, there were only 1019 Danish 
Red individuals. As a consequence, the power in the QTL 
detection for Danish Red was much lower than for Danish 
Holstein. This difference in power complicates the 
comparison of the proportion of QTL across breeds. The 
results do, however, suggest that a part of the QTL 
detected in one breed is shared with other breeds.  

 
Table 1. Proportion of QTL detected for protein yield 
shared across breed. The diagonals represent the 
number of QTL with p ≤ 10-6 detected in the breed in 
the first column, and the off-diagonals the proportion 
of these QTL for which there is a SNP with p ≤ 10-5 
within a distance of 1Mb found in the breed in the 
header.  
breed HD HF M N J R	
  
HD 449 0.36 0.26 0.08 0.15 0.10	
  
HF 0.65 139 0.35 0.23 0.14 0.09	
  
M 0.44 0.29 161 0.15 0.08 0.07	
  
N 0.30 0.44 0.29 82 0.04 0.10	
  
J 0.68 0.26 0.24 0.13 38 0.00	
  
R 0.68 0.32 0.32 0.11 0.11 28	
  

HD=Danish Holstein, HF=French Holstein, M=Montbéliarde, 
N=Normande, J=Jersey, R=Danish Red 

 
 
a. Within breed 

 
b. Across breed 

 
Figure 1. Regression of genomic relationships at 
prediction markers on genomic relationships at 100 
simulated causative mutations (b) on chromosome 1. 
Prediction markers are the markers from the 50K 
chip (50K), a constructed 50K chip (n50K), the HD 
chip (HD), a constructed HD chip (nHD) or 100000 
randomly selected SNP (100000). 
H=Holstein, J=Jersey, M=Montbéliarde, N=Normande, R=Danish Red 
 

The regression of genomic relationships at 
prediction markers on genomic relationships at causative 
mutations (b) increased when the number of causative 
mutations increased. For example, when simulating 50, 
100 or 250 causative mutations and using the 50K 
markers as prediction markers, b for Holstein equalled 
0.23, 0.39 and 0.63 respectively. Similar increases were 
found for other breeds and scenarios. While increasing the 
number of prediction markers (from 50K to HD or from 
n50K to nHD ! 100000) did not affect b, b was slightly 
higher when the 50K or HD markers were used than when 
an equal number of randomly selected SNP was used. For 
example, when simulating 100 causative mutations, b for 
Normande equalled 0.54 for the 50K and HD scenarios, 
and 0.50 for the n50K and nHD scenarios. The 50K and 
HD markers were not randomly selected SNP, but 
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selected to maximise MAF over a range of breeds 
(Matukumalli et al., 2009). Therefore, it is not surprising 
that using these markers as prediction markers instead of 
random markers results in higher values of b. Across 
breeds, differences in b for different sets of prediction 
markers were small and inconsistent. Figure 1 shows b for 
the scenarios with 100 causative mutations and different 
sets of prediction markers. Across breeds, the highest 
values of b were found between Montbéliarde and Danish 
Red.  
 
a. Within breed 

 
b. Across breed 

 
Figure 2. Regression of genomic relationships at 
prediction markers on genomic relationship at 100 
simulated causative mutations (b) on chromosome 1. 
Prediction markers in 1Kb intervals on both sides of 
the causative mutations, with increasing distance 
between intervals and causative mutations were used.  
H=Holstein, J=Jersey, M=Montbéliarde, N=Normande, R=Danish Red 
 

When prediction markers close to the causative 
mutations were used, b was higher than when SNP from 
the chips or random SNPs were used. Increasing the 
distance between the prediction markers and causative 
mutations resulted in a decrease in b (figure 2). This 
decrease was larger across breeds than within breed. The 
largest decrease took place between 1Kb and 25Kb, while 
increasing from 100Kb to 1Mb did only result in small 
additional decrease of b. For example, in the scenario 
with 100 causative mutations, when predicting across 
Jersey and Normande, b was 0.36 when using prediction 
markers a distance of 1b, decreased to 0.14 at 25 Kb, 
further decreased to 0.08 at 100 Kb and 0.04 at 1 Mb. 
Using the closest 50K or HD marker resulted in an 
average distance between causative mutations and 
markers of 24.8Kb and 2.6 Kb respectively. In these 

scenarios, values found for b were higher than when 1 Kb 
intervals on a similar distance was selected. For example, 
when simulating 100 causative mutations, and predicting 
across Montbéliarde and Danish Red, b was 0.26, while 
when using 1 Kb intervals on 25 Kb of the causative 
mutations resulted in a b of 0.19.   
 

Conclusion 
 
Our results suggest that there is a large potential 

to increase the reliability of genomic predictions using 
sequence data. First, a proportion of QTL detected within 
breed was shared across breed. Second, prediction of the 
genomic relationships at causative mutations was more 
accurate when prediction markers close to the causative 
mutations were used than when a large number of random 
markers or markers on the Illumina chips were used. This 
difference was more pronounced for across breed 
prediction than for within breed prediction. Genomic 
prediction across breed will thus be more accurate when a 
selective number of markers within 1 Kb of the causative 
mutations is included in the model. Whole-genome 
sequence data can help to get closer to the causative 
mutations and therefore improve genomic prediction 
across breed. 
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