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ABSTRACT: Two methods to efficiently approximate 
theoretical genomic reliabilities are presented. The first 
relies on the direct inverse of the left hand side (LHS) of 
mixed model equations. It uses the genomic relationship 
matrix for a small subset of individuals with the highest 
genomic relationship with the individual of interest. The 
second is a ridge-regression method using the direct inverse 
of LHS for a small subset of SNP. The performance of the 
methods was evaluated for the North American genomic 
data set, consisting of 228,168 genotyped individuals. The 
ridge-regression method gives very high correlations be-
tween theoretical and estimated reliabilities for subsets of 
5k SNP and above. It is easily applicable to large data sets. 
Both methods lead to some biases in the mean and SD of 
reliabilities but these can be corrected by pegging to theo-
retical values or values from validation studies. 
Keywords: direct inverse; genomic selection; reliability 
approximation 
 
 

Introduction 
 

The reliability is the squared correlation between 
estimated and true breeding values. Reliabilities are usually 
used to establish the confidence interval of breeding values 
for marketing purposes and to determine the weights re-
quired for blending direct genomic breeding values (DGV) 
with pedigree-based breeding values. Accurate reliabilities 
are also required for proper de-regression. Reliability for 
each individual can be obtained by calculating direct in-
verse of the left hand side of mixed model equations 
(MME). However, while this calculation is feasible for 
small data set it is not for the large data sets commonly used 
in national genetic/genomic evaluations. 

 
Due to the simple structure of the inverse of the 

pedigree-based relationship matrix several efficient reliabil-
ity approximation methods have been proposed (e.g., Harris 
and Johnson (1998); Jamrozik et al. (2000); Tier and Meyer 
(2004)). However, the genomic relationship matrix (G) is 
mostly defined by genotype similarities. There is no con-
sistent pattern of genotype similarity between relatives due 
to Mendelian sampling and the similarity arising from iden-
tity by state. So far, there has not been a simple and quick 
rule-based method to invert the G matrix and obtaining the 
direct inverse of G for a large population is very time-
consuming. Two genomic reliability approximation meth-

ods are presented which rely on inverting a relatively small 
matrix for a subset of training individuals or a subset of 
equidistant SNP. 

 
Materials and Methods 

 
Approximation method based on a subset of 

training individuals. Traditional breeding values are usual-
ly estimated by the best linear unbiased prediction (BLUP) 
methods using an animal model. (Co)variances between 
individuals are derived from pedigree. Genomic breeding 
values can also be estimated by the BLUP methods 
(GBLUP), replacing the pedigree-based (co)variance matrix 
with a (co)variance matrix calculated from genotype infor-
mation (VanRaden et al. (2009)). The MME for the 
GBLUP method is: 

 
𝟏!𝐑!𝟏𝟏 𝟏′𝐑!𝟏𝐙
𝐙′𝐑!𝟏𝟏 𝐙!𝐑!𝟏𝐙 + 𝐆

µμ
𝐮 = 𝟏′𝐑!𝟏𝐲

𝐙′𝐑!𝟏𝐲
  , 

 
where Z is an incidence matrix relating the vector of animal 
random effects (𝐮) to the vector of observations (y), µ is the 
overall mean, R is a diagonal matrix with diagonal element 
𝑟!! = (100/𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦!) − 1 , and G is the genomic 
(co)variance or relationship matrix. The genomic relation-
ship matrix is calculated as 𝐖𝐖!/2 𝑝!(1 − 𝑝!), where 
wij is the element for the ith individual and the jth locus, 
which is genotype call (AA=2, AB=1, BB=0) minus 2pj, 
where pj is frequency of allele A at the jth locus. The obser-
vation vector contains de-regressed values which have al-
ready been adjusted for fixed effects. The reliability (r2) of 
genomic breeding values is calculated as: 
 

𝑟!! = 1 −
𝑃𝐸𝑉!
𝑔!!

    , 

 
where PEVi is the prediction error variance for the ith indi-
vidual, which corresponds the diagonal of the inverse of the 
MME, and gii is the diagonal of the genomic relationship 
matrix. When the number of individuals in the reference 
population is large obtaining the inverse of MME is compu-
tationally demanding or unfeasible. Because individuals 
with a higher genomic relationship with the individual of 
interest contribute more to its DGV reliability, one may 
setup for each individual the MME for the n-closest rela-
tives (based on genomic relationship) in the training set. If 
n is small enough inverting such MME should be efficient. 



Approximation method based on a subset of 
equidistant SNP. An equivalent model to GBLUP is a 
ridge-regression with a shrinkage factor (𝜆) of 1: 
 

𝟏!𝐑!𝟏𝟏 𝟏′𝐑!𝟏𝐓′
𝐓𝐑!𝟏𝟏 𝐓𝐑!𝟏𝐓′ + 𝜆𝐈

µμ
𝐯 = 𝟏′𝐑!𝟏𝐲

𝐓𝐑!𝟏𝐲
    , 

  
where T is 𝐖(2 𝑝!(1 − 𝑝!))!!.! and 𝐯 is a vector of SNP 
effects. Prediction error variance can then be obtained as: 
 

𝑃𝐸𝑉! = t!𝐂t!′  , 
  
where 𝐂 = (𝐓𝐑!𝟏𝐓! + 𝐈)!𝟏  (Strandén and Christensen 
(2011)). The size of matrix C is the number of SNP and 
therefore computation of C is also time-consuming. How-
ever, if we assume that a subset of SNP can capture most of 
genomic relationships between individuals then obtaining 
C* for a subset of SNP should be computationally afforda-
ble. 
 

In this study the possibility of approximating reli-
abilities based on a subset of training individuals or a subset 
of SNP was investigated. Both methods were examined on 
a large Holstein genomic data set. 

 
Data. Genomic data set was provided by the Ca-

nadian Dairy Network. The data consisted of 22,856 train-
ing individuals with either domestic or across country 
(MACE) proofs, and 205,312 prediction individuals. Each 
individual had 45,187 original or imputed SNP genotypes 
from the Illumina BovineSNP50 BeadChip (Illumina Inc., 
San Diego, CA). These SNP are being used for official ge-
nomic evaluation in Canada (Canadian Dairy Network, 
Guelph, ON) and all have passed quality control measures 
used in national genomic evaluation. In this study, de-
regressed proofs and corresponding reliabilities for protein 
yield were used. 

 
Statistical analyses. Reliabilities were approxi-

mated using either GBLUP (subset of training individuals) 
or the ridge-regression method (subset of SNP) for different 
numbers of individuals and SNP. The G matrix was not 
adjusted and no pedigree-based relationships were added to 
the G matrix. The correlation between approximated and 
theoretical reliabilities was calculated in order to measure 
the accuracy of the approximations. 

 
Results and Discussion 

 
Table 1 shows the correlation between approxi-

mated and theoretical reliabilities, mean and standard devia-
tion (SD) of the approximated values for different numbers 
of training individual. Correlation between approximated 
and theoretical reliabilities increased as the number of train-
ing individuals with the highest genomic relationship in-
creased. The accuracy of approximated reliabilities was 
lower for the prediction set compared to the training set. 
Although the correlations were moderate, reliabilities were 

severely underestimated compared to theoretical reliabili-
ties and had substantially less variation. There was more 
underestimation for the prediction group. Computing time 
increased exponentially as the number of animals in the 
subset increased mainly because one MME must be invert-
ed for each individual. A much larger number of training 
individuals than what was considered in this study is re-
quired to obtain a more accurate approximation, but then 
such approximation is no longer computationally justified. 

 
Table 1. Correlation between approximated and theoretical 
reliabilities using GBLUP method. 

 Training Prediction  
No.1 r Mean SD r Mean SD Time2 
40 0.858 4.79 0.46 0.636 3.33 0.44 0.068 
80 0.863 5.06 0.47 0.665 3.58 0.46 0.075 
180 0.872 5.40 0.48 0.702 3.86 0.50 0.092 
360 0.882 6.59 0.55 0.741 4.93 0.58 0.221 
640 0.896 7.70 0.59 0.783 5.88 0.67 1.121 
Theo. 1.000 93.74 2.21 1.000 87.66 2.95 1.000 
1Number of training animals with the highest genomic relationship 
with the individual of interest, for which the reliability needs to be 
approximated 
2Computing time relative to the time required to obtain  theoretical 
(theo.) reliabilities from GBLUP 
SD: Standard deviation 
 
 
Table 2. Correlation between approximated and theoretical 
reliabilities using ridge-regression method. 

 Training Prediction  
No.1 r Mean SD r Mean SD Time2 
1k 0.839 99.54 0.06 0.833 99.44 0.05 0.004 
3k 0.942 98.34 0.36 0.945 97.70 0.33 0.022 
5k 0.973 97.29 0.71 0.976 95.88 0.72 0.054 
10k 0.994 95.71 1.34 0.995 92.63 1.54 0.217 
15k 0.998 94.98 1.66 0.998 90.91 2.01 0.496 
20k 0.999 94.55 1.85 0.999 89.81 2.33 0.908 
Theo. 1.000 93.74 2.21 1.000 87.66 2.95 1.000 
1Number of equidistant SNP 
2Computing time relative to the time required to obtain  theoretical 
(theo.) reliabilities from GBLUP 
SD: Standard deviation 

 
 
The results for reliability approximations based on 

a subset of equidistant SNP are given in Table 2. For subset 
of 5k and above, there was good agreement between ap-
proximated and theoretical reliabilities, and correlations 
were very high. Accuracies for training and prediction sets 
were almost the same. There was less bias in the mean and 
SD of approximated reliabilities compared to those from 
GBLUP using a subset of training individuals. However, 
these biases were still significant enough that they would 
require correction. 

 
In most livestock species, the size of the training 

set increases over time due to phenotyping and genotyping 
of new individuals. This increase is not expected to impact 
the mean and SD of approximated reliabilities from the 
GBLUP method because the size of the subset is fixed. 



With ridge-regression method, the increase in size of the 
training set is taken into account, which makes the method 
robust to the changes in the size of the training set. 

 
For the ridge-regression method, several different 

selection strategies for the subset of SNP were investigated: 
a) n equidistant SNP, b) n randomly selected SNP, c) n SNP 
with the largest absolute effects, d) n SNP with a similar 
distribution of SNP effects as the full set, and e) n SNP with 
a similar allele frequency distribution as the full set. Ap-
proximation accuracies were very close for all above sce-
narios when the number of SNP in the subset was larger 
than 3k (results not shown). 

 
For both approximation methods, the bias in the 

mean and SD could be adjusted periodically (for example 
once a year between official evaluations). This adjustment 
should be done through equivalent daughter contributions 
(EDC) rather than directly on reliabilities. If a direct inverse 
is still feasible with the full set of SNP or individuals, one 
can establish a prediction equation by regressing EDC 
based on the full set of SNP or individuals on EDC based 
on the reduced set. Then reliabilities in subsequent evalua-
tions can be adjusted based on the change in EDC resulting 
from this prediction equation. If a direct inverse is not fea-
sible or too time-consuming, prediction equations based on 
SNP or individuals subsets of increasing size can be used to 
obtain a prediction for the full SNP set. Given that the 
number of SNP in genomic evaluation is more stable over 
time than the number of training individuals, this adjust-
ment is more practical for the ridge-regression method with 
a subset of SNP. The mean of approximated reliabilities 
could also be equated to the average reliability derived from 
a genomic validation study for the same trait, rather than to 
the mean of theoretical reliabilities. This would have the 
merit of forcing the reliabilities of individual animals to be 
more in line with those found from validation. If need be, 
an upward adjustment to this mean could be made to ac-
count for the larger number of reference animals in official 
evaluations compared to validation. However, reliability 
increases that result from adding new animals to current 
reference populations appear to be lower than theoretical 
predictions, likely because our statistical models do not 
account for all biological effects (e.g. non-additive effects, 
gene interactions). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 

 
Estimated reliabilities were substantially more ac-

curate with the ridge-regression method based on a subset 
of SNP than with the GBLUP method based on a subset of 
closely related training individuals. The correlation between 
approximated and theoretical reliabilities was very high for 
the method based on a subset of SNP. Both methods lead to 
biases in the mean and SD of approximated reliabilities but 
these can be adjusted periodically by pegging to theoretical 
EDC values obtained from a data set where the computation 
is feasible. For the mean, an alternative is to peg the ap-
proximated reliability to the average reliability from valida-
tion studies. The ridge-regression method was more robust 
across different scenarios and computationally more effi-
cient than the GBLUP method. 
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